
Computer Science 340

Software Design & Testing

UML Sequence Diagrams

Behavioral Modeling in UML
• Class Diagrams are used to model the static structure of a

system
– The things in the system and the connections between them

• In addition to static structure, a system also has dynamic

behavior
– The system must DO something to be useful
– How the objects in the system interact at runtime

• When and by whom are the various objects created?
• What is the message flow between the various objects?

– What are the Algorithms?

Sequence Diagrams
• Sequence Diagrams are used to show how messages flow

between objects

• They provide one possible representation for algorithmic
behavior
– Pseudo code is another

• Sequence Diagrams contain:

– Objects (instances)
– Lifelines
– Messages

Object Lifelines
• Time proceeds from top to bottom

• Dashed line represents the lifetime of

the object (the time during which the
object exists)

• Activation boxes show when the
object is active (i.e., executing an
operation)

anObject

Message Passing
object A object B object C

msgA(x,y,3)

name

getName()

msgB(u,v)
msgC()

DoIt()

Creating/Deleting Objects
object A

object B
new

delete

r : Registrar

s : Student
new

 : School

addStudent(s)

register()

c1 : Course c2 : Course

getSchedule()

setRegistered(true)

add(s)

add(s)

Example

Source: Booch et. al., The UML User Guide

Example
: Floor Button

Push

: Controller

PushNotify

Illuminate(true)

: Elevator

Move(floor)

ReachedFloorNotify

Stop

Illuminate(false)

: Door

Open

Close

Iteration and
Branching

Source: Fowler, UML Distilled

Pseudo Code
Create new student

Add new student to school

For each course in student's schedule
 Add student to course

Mark student as "registered"

Pseudo Code
For each line item in the order

 If item is in stock

 Decrement quantity of item in stock

 If item needs to be reordered
 Create re-order request

 Create delivery request

Sequence Diagrams vs. Pseudo Code
• Sequence diagrams are good at showing how multiple

objects work together to achieve a task
– Algorithms are frequently distributed across multiple classes
– Sequence diagrams excel at showing the message flow across

participating objects

• Sequence diagrams are not good at showing complex logic
– Complex logic = Lots of iteration and branching
– If complex logic is needed, you can create a separate diagram for

each major path, thus keeping each diagram as linear as possible
– Pseudo code can be a better representation for complex algorithms

	Computer Science 340��Software Design & Testing
	Behavioral Modeling in UML
	Sequence Diagrams
	Object Lifelines
	Message Passing
	Creating/Deleting Objects
	Example
	Example
	Iteration and �Branching
	Pseudo Code
	Pseudo Code
	Sequence Diagrams vs. Pseudo Code

