
CS 340

UML
Class Diagrams

A model is an abstraction of a
system, specifying the modeled
system from a certain viewpoint

and at a certain level of
abstraction

Complexity and Modeling
• Modeling is a well-accepted engineering technique

for dealing with complexity
• Models let us focus on one view of the system while

ignoring irrelevant details (a simplification of reality)
– Example: Plumbers only care about plumbing, so we give

them plumbing diagrams; electricians only care about
electrical work, so we give them electrical diagrams, etc.

• Models can be created at different levels of
abstraction
– 10,000 ft. view vs. 10 ft. view
– High-level: sketch of the building's exterior for the customer
– Low-level: detailed electrical plan for the electrician

Software Modeling

• Why do we create models of software
systems?

• Models help us visualize and understand
the system we're building

• Models are used to document the design
of the system and communicate it to
others

• Models serve as a guide during system
construction

UML

• Unified Modeling Language
• History
• Models

– Data
– Behavior
– Interaction
– Packaging

Levels of Models
• Conceptual Model – Problem Understanding
• Specification/Requirement Document – Solutions
• High-Level Design Model

– Systems, Packages, Classes
– Interactions, Interfaces

• Low-Level Design Model
– Class Conceptual Model
– May be better done with Class documentation such

as Javadoc
• Implementation

– Should be done in code not UML

UML Models
• Structural/Data

– Class Diagram
– Package Diagram (a superset of class diagrams)
– Object Diagram

• Behavior
– Use Case Diagram
– State Diagram
– Activity Diagram

• Interaction
– Communication Diagram
– Sequence Diagram

• Physical Diagram
– Component Diagram
– Deployment Diagrams

Classes At the Conceptual
Level

A Class – typically named with a common noun.

At the conceptual level the class is a set of objects with
common properties.

Mother

Classes At the Design Level
A Class – typically named with a common noun.
At the design level a Class is a Type.

Visibility constraints (optional) :
+ (public), - (private), # (protected), / (derived), _ (static), ~ (package).

We may add cardinality constraints to an attribute. In this case it means that a
Mother has 1 or more names. If the cardinality constraint is omitted it is
assumed to be the cardinality constraint “1”.
For some situations we may omit the Method Section or the Attribute Section.

Mother

- name : Name [1.. *]
- age : int

+ print()
+ equals(Object)

Attribute Section

Method Section

Objects
An Object – notice the name is underlined.

While some find Objects useful in the Class diagram others
do not.

Clara

Associations
An association can be thought of as a declarative sentence.

The name in the association is optional but suggested.

Typical association constraints are 1, 0..1, *, 1..*, n..m.
UML 1.0 supported a notation for an arbitrary set of
non-negative integers (e.g. 2:4, 6,12 meaning the set
{2,3,4,6,12}

Most associations are binary.

Child Mother
1*

has

Associations Continued
• Roles

– Although this example has 2 roles, there may be only 1, or most
often 0 roles on an association.

– Roles can be viewed as Specializations

• While not all versions of UML support the same
annotations, you may find some when reading UML
diagrams.

Male Female
11 is married to

Husband Wife

Mother Child
1..*1

has {ordered}

Directed Associations
• Should only be used as a design construct

– Means that we can access an Address via a Person, but, given
an Address we can’t determine the Person associated with it.

– If the association constraint on the opposite side of the
navigability arrow is a 1, then this is equivalent to

– Notice the cardinality constraint to the right of the attribute.

Person Address
1..*1

has

Person

address : Address [1..*]

Aggregation/Composition
• Aggregation

– Can be read as Person is subpart of a Company
– Some people prefer to just use associations
– Can use “comb” representation if there are different types of subparts.

• Composition

– Can be read as “A Car is composed of 1 or more Car Parts”.
– A much stronger form of Aggregation. Some suggest it implies a Car Part

cannot exist unless it is part of a car.
– Notice there is no association constraint next to the black diamond

because it is always 1.

Company Person
1..*

0..* Employee

Car Car Part
1..*

Generalization/Specialization

– For conceptual modeling every Faculty Member, Staff Member, and
Student is a BYU Person. “Is A” Semantics. That is, subset semantics.
In this case the set, Student, is a subset of the set BYU Person.

– At the Design level it represents “subtype” or “inheritance” semantics.
– A generalization/specialization often has a single specialization.

BYU
Person

Faculty
Member

Staff
Member Student

General Constraints/Notes
• General Constraints

– {A Father must be a male Person}
– Can be expressed formally in OCL, a type of first-

order logic.
• Notes

A Note
Family
History

Dependency
• Used in design models. Especially good for

representing dependencies that aren’t obvious,
such as assumptions.

Person Address

Association Class
• Useful when thinking of an association as an object.
• Could use an n-ary relation.

Husband Wife
1..*1..*

married

Marriage Information

date : Date
temple: Temple

N-ary Associations

• In UML the association constraints are binary functional dependencies.

• They tried to extend that idea to n-ary associations. It didn’t work well.

• Here the 4 association constraints mean

– For a given Husband, Wife, and Temple in the association there are 1 or more Dates.

– For a given Husband, Wife, and Date in the association there is 1 and only 1 Temple.

– For a given Husband, Date and Temple in the association there is 1 and only 1 Wife.

– For a given Wife, Date, and Temple in the association there is 1 and only 1 Husband.

• Because this is awkward it is not used much.

Husband Wife
11

Date

Temple

1..*

A Husband married a Wife

on a given Date at a particular Temple

1

Class diagram example: video store

DVD Movie VHS Movie Video Game

Rental Item

Rental Invoice

1..*
1

Customer

Checkout Screen

0..1

1

Simple
Association

Class

Abstract
Class

Simple
Aggregation

Generalization
Composition

Multiplicity

Class diagram example

Aggregation – Order class
contains OrderDetail
classes. Could be
composition?

1R�DUURZV��LQIR�FDQ�
IORZ�LQ�ERWK�GLUHFWLRQV

Class Diagram
Example

+floor : float
+direction : Direction

Elevator

+NONE
+UP
+DOWN

«enumeration»
Direction

Building

1 1..*

+number : int
Floor

1

1..*

+Push()
+illuminated : bool

Button

+floorNumber : int
Elevator Button

+direction : Direction
Floor Button

1 2

1

1..*

Person

* 0..1

*

0..1

{An Elevator has a button for
each Floor}

{A Person is always associated with a Floor
or an Elevator, but never both at the same time}

{A Floor has one Down button and
one Up button}

Class Diagram
Example

Source: Booch et. al., The UML User Guide

+name : string
Company

name : string
Department

1

1..*

address : string
voice : string

Office

1
1..*

* *

Is Located At40..1

*

GetContactInformation() : ContactInformation
GetPayrollInformation() : PayrollInformation

name : string
employeeID : int
title : string

Person

address : string
ContactInformation

taxID : string
salary : float

PayrollInformation

Headquarters

*

member1..*

*

manager1

