Chapter 7

PDA and CFLs

- Is an enhanced FSA with an <u>internal memory</u> system, i.e., a (*pushdown*) stack.
- Overcomes the memory limitations and increases the processing power of FSAs.
- Defn. 7.1.1 A pushdown automaton (PDA) is a sextuple $(Q, \sum, \Gamma, \delta, q_0, F)$, where
 - Q is a finite set of states
 - Σ is a finite set of input symbols, called input alphabet
 - Γ is a finite set of stack symbols, called stack alphabet
 - $q_0 \in Q$, is the start state
 - \succ $F \subseteq Q$, is the set of final states
 - $\delta: Q \times (\sum \cup \{\lambda\}) \times (\Gamma \cup \{\lambda\}) \rightarrow Q \times (\Gamma \cup \{\lambda\}), a$ (partial) transition function

- A convention:
 - Stack symbols are capital letters
 - Greek letters represent strings of stack symbols
 - An empty stack is denoted λ
 - \rightarrow $A\alpha$ represents a stack with A as the top element

δ is of the form

$$\delta(q_{i_0}, a, A_0) = \{ [q_{i_1}, A_1], [q_{i_2}, A_2], ..., [q_{i_n}, A_n] \}$$

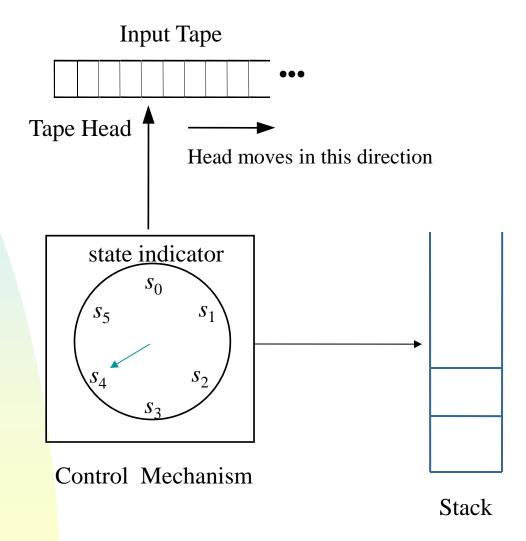
where the transition

$$[q_{i_0}, A_i] \in \delta(q_{i_0}, a, A_0), 1 \le j \le n$$

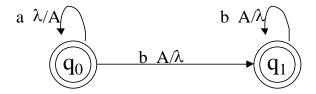
denotes that

- \rightarrow q_{i_0} is the *current state*
- a is the current input symbol
- > A₀ is the current top of the stack symbol
- $> q_{ij} (1 \le j \le n)$ is the new state, and
- A_j is the new top of the stack symbol and in a state (transition) diagram, it is denoted

7.1 Pushdown Automaton



- Special cases (note that q_i and q_i can be the same):
 - $[q_i, A] \in \delta(q_i, a, \lambda)$ /* Consume the input, push a stack symbol */
 - $[q_i, \lambda] \in \delta(q_i, \lambda, A)$ /* Consume no input, pop the TOS symbol */
 - $[q_i, A] \in \delta(q_i, \lambda, \lambda)$ /* Consume no input, push a stack symbol */
 - $[q_j, \lambda] \in \delta(q_i, a, \lambda)$ /* Consume input, no push/pop, an FSA transition */
- The PDA notation $[q_i, w, \alpha] \mid_{m}^{*} [q_i, v, \beta]$ indicates that $[q_i, v, \beta]$ can be obtained from $[q_i, w, \alpha]$ as a result of a sequence of transitions (i.e., 0 or more).
- **Example.** The PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, where δ is



Accepts $a^n b^n$ ($n \ge 0$) with an empty stack and in an accepting state 6

- Defn. 7.1.2 Let $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ be a PDA. A string $w \in \Sigma^*$ is accepted by M if $\exists [q_0, w, \lambda] \vdash^* [q_i, \lambda, \lambda]$, where $q_i \in F$. L(M), the language of M, is the set of strings accepted by M.
- Example (7.1.1) Give a PDA that accepts the language { wcw^R | w ∈ { a, b }* }.
- Defn. A PDA is deterministic if there is at most one transition that is applicable for each configuration of <state, input symbol, stack top symbol>.
 - Example 7.1.2 Construct $L = \{ a^i \mid i \ge 0 \} \cup \{ a^i b^i \mid i \ge 0 \}$
 - Example 7.1.3 Construct all even-length palindromes over { a, b }
 - Nondeterministic PDAs allow the machines to "guess"
 - For some NPDAs, their counterparts (i.e., DPDAs) do not exist
 - ▶ Languages L accepted by DPDA include RL, and $L \subset CFL$

7.2 Variations on PDAs

Defn. A PDA is atomic if each transition in the PDA is of one of the following forms:

```
[q_j, \lambda] \in \delta(q_i, a, \lambda) : process an input symbol [q_j, \lambda] \in \delta(q_i, \lambda, A) : pop the stack [q_j, A] \in \delta(q_i, \lambda, \lambda) : push a stack symbol
```

- Theorem 7.2.1. Let M be a PDA. Then \exists an atomic PDA M such that L(M) = L(M).
 - Replace each non-atomic transition by a <u>sequence</u> of atomic transitions
- <u>Defn.</u> A transition $[q_j, \alpha] \in \delta(q_i, a, A)$, where $\alpha \in \Gamma^+$ is called *extended transition*. A PDA containing extended transition is called an <u>extended PDA</u>.
 - Example 7.2.1. Construct $L = \{ a^i b^{2i} \mid i \ge 1 \}$, with PDA, atomic PDA, and extended PDA

7.2 Variations on PDAs

Example 7.2.1

Let $L = \{a^i b^{2i} \mid i \ge 1\}$. A PDA, an atomic PDA, and an extended PDA are constructed to accept L. The input alphabet $\{a, b\}$, stack alphabet $\{A\}$, and accepting state q_1 are the same for each automaton.

PDA

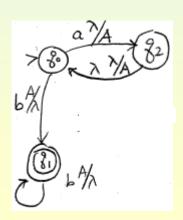
$$Q = \{q_0, q_1, q_2\}$$

$$\delta(q_0, a, \lambda) = \{[q_2, A]\}$$

$$\delta(q_2, \lambda, \lambda) = \{[q_0, A]\}$$

$$\delta(q_0, b, A) = \{[q_1, \lambda]\}$$

$$\delta(q_1, b, A) = \{[q_1, \lambda]\}$$



Atomic PDA

$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\delta(q_0, a, \lambda) = \{[q_3, \lambda]\}$$

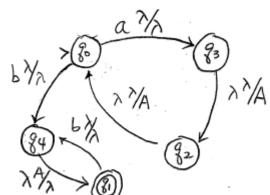
$$\delta(q_3, \lambda, \lambda) = \{[q_2, A]\}$$

$$\delta(q_2, \lambda, \lambda) = \{[q_0, A]\}$$

$$\delta(q_0, b, \lambda) = \{[q_4, \lambda]\}$$

$$\delta(q_4, \lambda, A) = \{[q_1, \lambda]\}$$

$$\delta(q_1, b, \lambda) = \{[q_4, \lambda]\}$$



Extended PDA

$$Q = \{q_0, q_1\}$$

$$\delta(q_0, a, \lambda) = \{[q_0, AA]\}$$

$$\delta(q_0, b, A) = \{[q_1, \lambda]\}$$

$$\delta(q_1, b, A) = \{[q_1, \lambda]\}$$



PDA

- <u>Defn</u>. A string w is accepted by <u>final state</u> if \exists a computation $[q_0, w, \lambda] \stackrel{*}{\models} [q_i, \lambda, \alpha]$, where $q_i \in F$ and $\alpha \in \Gamma^*$, i.e., the content of the stack is *irrelevant*.
- Lemma 7.2.3. Let L be a language accepted by a PDA M with acceptance defined by final state. Then ∃ a PDA M' that accepts L by final state and empty stack.
- Proof. Let $M' = (Q \cup \{q_f\}, \Sigma, \Gamma, \delta', q_0, \{q_f\})$, where $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, $\delta' \supseteq \delta$, $\forall q_i \in F, \delta'(q_i, \lambda, \lambda) = \{ [q_f, \lambda] \}$, and $\forall A \in \Gamma, \delta'(q_f, \lambda, A) = \{ [q_f, \lambda] \}$

hence, given M,

$$[q_0, w, \lambda] \stackrel{*}{\models_{M}} [q_i, \lambda, \alpha] \stackrel{*}{\models_{M'}} [q_f, \lambda, \alpha] \stackrel{*}{\models_{M'}} [q_f, \lambda, \lambda].$$

PDA

- <u>Defn.</u> A string w is said to be accepted by <u>empty stack</u> if \exists a computation $[q_0, w, \lambda] \vdash^+ [q_i, \lambda, \lambda]$, where q_i may not be a final state.
- Lemma 7.2.4. Let L be a language accepted by a PDA M with acceptance defined by empty stack. Then ∃ a PDA M' that accepts L by final state and empty stack.

Proof. (P. 230) Let
$$M' = (Q \cup \{q_0'\}, \Sigma, \Gamma, \delta', q_0', Q)$$
, where $M = (Q, \Sigma, \Gamma, \delta, q_0)$, and

each state in M' is a *final state*, except q_0 , the new start state, where

$$\delta'(q_0', a, A) = \delta(q_0, a, A)$$
, and $\forall q_i \in Q, a \in \Sigma \cup \{\lambda\}, A \in \Gamma \cup \{\lambda\}, \delta'(q_i, a, A) = \delta(q_i, a, A)$

Two-Stack PDAs

- Two-stack PDAs, an extension of PDAs
- A two-stack PDA (2PDA) is a sextuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where
 - \triangleright Q, Σ , Γ , q_0 , and F are the same as in a one-stack PDA

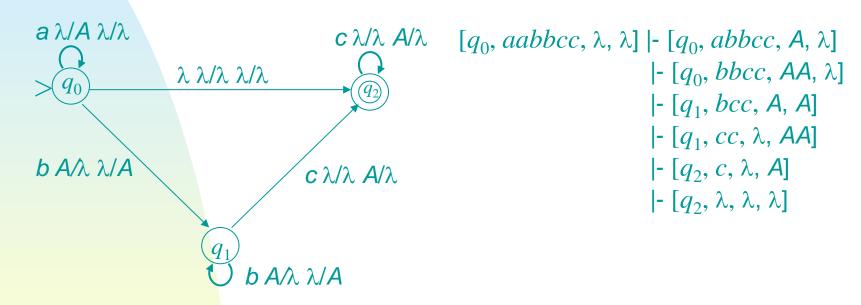
$$\delta: \mathbf{Q} \times (\Sigma \cup \{ \lambda \}) \times (\Gamma \cup \{ \lambda \}) \times (\Gamma \cup \{ \lambda \}) \rightarrow \\ \mathbf{Q} \times (\Gamma \cup \{ \lambda \}) \times (\Gamma \cup \{ \lambda \})$$

- 2PDAs accept non-CFLs, in addition to all CFLs
- Accepting criteria:
 - Consume an input string
 - > Enter a final state
 - Empty both stacks

Two-Stack PDAs

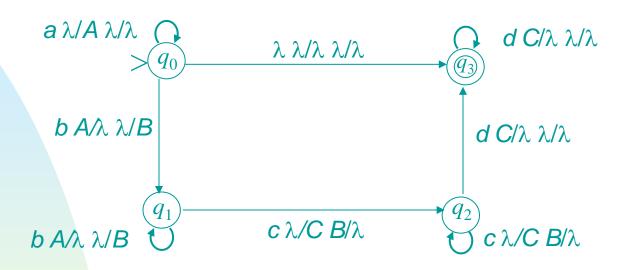
Example. Given $L = \{ a^i b^i c^i \mid i \ge 0 \}$, L is not a CFL.

A 2PDA M that accepts L is



Two-Stack PDAs

Example. A 2PDA M accepts $L = \{ a^i b^i c^i d^i \mid i \ge 0 \}$



```
 [q_{0}, aabbccdd, \lambda, \lambda] \mid - [q_{0}, abbccdd, A, \lambda]   \mid - [q_{0}, bbccdd, AA, \lambda]   \mid - [q_{1}, bccdd, A, B]   \mid - [q_{1}, ccdd, \lambda, BB]   \mid - [q_{2}, cdd, C, B]   \mid - [q_{2}, dd, CC, \lambda]   \mid - [q_{3}, d, C, \lambda]   \mid - [q_{3}, \lambda, \lambda, \lambda, \lambda]
```

- Defn. 5.6.1. A CFG $G = (V, \Sigma, P, S)$ is in Greibach normal form (GNF) if each rule has one of the following forms:
 - i) $A \rightarrow aA_1A_2 \dots A_n$
 - ii) $A \rightarrow a$
 - iii) $S \rightarrow \lambda$
 - where $a \in \Sigma$ and $A_i \in V \{S\}, i = 1, 2, ..., n$
- Example: Given the language L = { aⁱbⁱc^k | i, j, k ≥ 0 and (i = j or i = k) }, the following PDA accepts L:



The CFG G that generates the set of string in the language

$$L = \{ a^i b^j c^k \mid i, j, k \ge 0 \text{ and } (i = j \text{ or } i = k) \}, \text{ i.e., } L(G), \text{ is } i = k \}$$

$$S \rightarrow aAc \mid aDbC \mid \lambda \mid B \mid C$$

$$i = k \{ A \rightarrow aAc \mid bB \mid \lambda$$

$$B \rightarrow bB \mid \lambda$$

$$i = j \{ D \rightarrow aDb \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

- Theorem 7.3.1 Let L be a CFL. Then ∃ a PDA that accepts L.
- Proof. Let $G = (V, \Sigma, P, S)$ be a grammar in GNF that generates L. An extended PDA M with start state q_0 is defined by

$$Q_m = \{ q_0, q_1 \}, \Sigma_m = \Sigma, \Gamma_m = V - \{ S \}, \text{ and } F_m = \{ q_1 \} \}$$

with transitions

- (a) $\delta(q_0, a, \lambda) = \{ [q_1, w] \mid S \to aw \in P \}$
- (b) $\delta(q_1, a, A) = \{ [q_1, w] \mid A \to aw \in P \text{ and } A \in V \{S\} \}$

(c)
$$\delta(q_0, \lambda, \lambda) = \{ [q_1, \lambda] \mid S \to \lambda \in P \}$$

Proof. We must show that

i) $L \subseteq L(M)$

For each derivation $S \stackrel{*}{\Rightarrow} uw$ with $u \in \Sigma^+$ and $w \in V^*$, we show that \exists a computation $[q_0, u, \lambda] \stackrel{*}{\vdash} [q_1, \lambda, w]$ in M by induction on the length of the derivation, i.e., n.

Basis: n = 1, i.e., $S \Rightarrow aw$, where $a \in \Sigma$ and $w \in V^*$ The transition (a), i.e., $\delta(q_0, a, \lambda) = \{ [q_1, w] \mid S \rightarrow aw \in P \}$, yields the desired computation.

Induction Hypothesis:

Assume for every derivation $S \stackrel{"}{\Rightarrow} uw$, \exists a computation $[q_0, u, \lambda] \stackrel{*}{\models} [q_1, \lambda, w]$ in M.

PDA and CFLs

Induction:

Now consider $S \stackrel{n+1}{\Rightarrow} uw$. Let $u = va \in \Sigma^+ \& w \in V^*$, $S \stackrel{n+1}{\Rightarrow} uw$ can be written as $S \stackrel{n}{\Rightarrow} vAw_2 \Rightarrow uw$, where $w = w_1w_2 \& A \rightarrow aw_1 \in P$.

By I.H. &
$$[q_1, w_1] \in \delta(q_1, a, A)$$
 of Transition (b), i.e., $\delta(q_1, a, A) = \{ [q_1, w] \mid A \to aw \in P \& A \in V - \{ S \} \}$ $[q_0, va, \lambda] \stackrel{*}{\models} [q_1, a, Aw_2]$ $\vdash [q_1, \lambda, w_1w_2]$

If $\lambda \in L$, then $S \to \lambda \in P$ yields the Transition (c), i.e., $[q_0, \lambda, \lambda] \models [q_1, \lambda]$

Show that for every computation $[q_0, u, \lambda] \stackrel{*}{\vdash} [q_1, \lambda, w]$, a derivation $S \stackrel{*}{\Rightarrow} uw$ in G by induction.

PDA and CFLs

- Every language accepted by a PDA is context-free
- The Transformation Algorithm:
 - Let $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ be a PDA. We construct the grammar $G \ni L(G) = L(M)$.
 - (i) Construct an extended PDA M' w/ δ' as its transition function from M . \ni .
 - (a) Given $[q_j, \lambda] \in \delta(q_i, u, \lambda)$, construct $[q_j, A] \in \delta'(q_i, u, A)$, $\forall A \in \Gamma$
 - (b) Given $[q_j, B] \in \delta(q_i, u, \lambda)$, construct $[q_j, BA] \in \delta'(q_i, u, A)$, $\forall A \in \Gamma$
 - (ii) Given the PDA M as constructed in step (i), construct $G = (V, \Sigma, P, S)$, where $V = \{S\} \cup \{\langle q_i, A, q_j \rangle \mid q_i, q_j \in Q, A \in \Gamma \cup \{\lambda\}\}$.
 - $<q_i$, A, q_j denotes a computation that begins in q_i , ends in q_i & removes A ($\in \Gamma$) from the stack.

The Transformation Algorithm

- P is constructed as follows:
 - 1. $S \rightarrow \langle q_0, \lambda, q_i \rangle, \forall q_i \in F$
 - 2. For each transition $[q_j, B] \in \delta(q_i, X, A)$, where $A \in \Gamma \cup \{\lambda\}$, create $\{\langle q_i, A, q_k \rangle \rightarrow X \langle q_i, B, q_k \rangle \mid q_k \in Q\}$
 - 3. For each transition $[q_j, BA] \in \delta(q_i, X, A)$, where $A \in \Gamma$, create $\{\langle q_i, A, q_k \rangle \rightarrow X \langle q_i, B, q_n \rangle \langle q_n, A, q_k \rangle | q_k, q_n \in Q\}$
 - 4. For each $q_k \in Q$, create $\langle q_k, \lambda, q_k \rangle \to \lambda$.
 - Rule 1: A computation begins w/ the *start state*, ends in a *final state*, & terminate w/ an *empty stack*, i.e., a <u>successful computation</u> in *M*′
 - Rules 2 & 3: Trace the transitions of M
 - Rule 4: Terminate derivations

PDA & CFLs

- Example 7.3.1. Given the PDA M such that L(M) = { aⁿcbⁿ | n ≥ 0 }. The corresponding CFG G is given in Table 7.3.1 (on P.240).
- M is

$$Q = \{q_0, q_1\} \qquad \delta(q_0, a, \lambda) = \{[q_0, A]\}$$

$$\sum = \{a, b, c\} \qquad \delta(q_0, c, \lambda) = \{[q_1, \lambda]\}$$

$$\Gamma = \{A\} \qquad \delta(q_1, b, A) = \{[q_1, \lambda]\}$$

$$F = \{q_1\}$$

M is M with the additional transitions:

$$\delta(q_0, a, A) = \{ [q_0, AA] \}$$
 and $\delta(q_0, c, A) = \{ [q_1, A] \}$

PDA and CFLs

- Example 7.3.1 P in G includes:
 - using Rule 1: $S \rightarrow \langle q_0, \lambda, q_1 \rangle$
 - given $\delta(q_0, a, \lambda) = \{ [q_0, A] \}$ & Rule 2: $\langle q_0, \lambda, q_0 \rangle \rightarrow a \langle q_0, A, q_0 \rangle$ $\langle q_0, \lambda, q_1 \rangle \rightarrow a \langle q_0, A, q_1 \rangle$
 - given $\delta(q_0, a, A) = \{[q_0, AA]\}$ & Rule 3:

• given $\delta(q_0, c, \lambda) = \{ [q_1, \lambda] \} \& \text{Rule 2}:$

$$< q_0, \lambda, q_0 > \to c < q_1, \lambda, q_0 > < q_0, \lambda, q_1 > \to c < q_1, \lambda, q_1 >$$

- given $\delta(q_0, c, A) = \{ [q_1, A] \} \& \text{Rule 2}:$ $\langle q_0, A, q_0 \rangle \to c \langle q_1, A, q_0 \rangle$ $\langle q_0, A, q_1 \rangle \to c \langle q_1, A, q_1 \rangle$
- given $\delta(q_1, b, A) = \{ [q_1, \lambda] \}$ $< q_1, A, q_0 > \to b < q_1, \lambda, q_0 >$ $< q_1, A, q_1 > \to b < q_1, \lambda, q_1 >$
- using Rule 4: $< q_0, \lambda, q_0 > \rightarrow \lambda$ $< q_1, \lambda, q_1 > \rightarrow \lambda$