Chapter 6

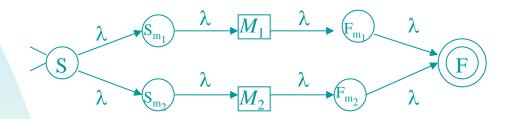
Properties of Regular Languages

Regular Sets and Languages

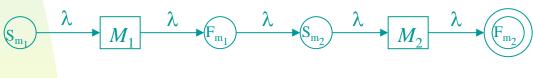
- Claim(1). The family of languages accepted by FSAs consists
 of precisely the regular sets over a given alphabet.
- Every regular set is accepted by some $NFA-\lambda$,
 - a) ϕ : q_0
 - b) λ : $q_0 \xrightarrow{\lambda} q_f$ or $q_0 \xrightarrow{Q_0}$
 - c) $\forall a \in \Sigma$: $q_0 \xrightarrow{a} q_f$
- Defn. 2.3.1 (on regular sets): Let ∑ be an alphabet. The regular sets over ∑ are defined recursively as follows:
 - i) Basis: ϕ , { λ }, and { a }, $\forall a \in \Sigma$, are regular sets over Σ
 - ii) Recursion: Let X and Y be regular sets over Σ . The sets $X \cup Y$, XY, and X^* are regular sets over Σ .
 - iii) Closure: Every regular set is obtained from (i) by a finite number of application of (ii)

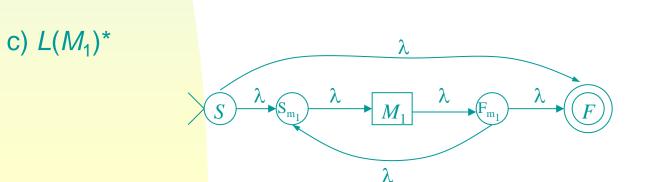
Regular Sets and Languages

- Let M_1 and M_2 be two FSAs, and let S_{m_1} , F_{m_1} , S_{m_2} , and F_{m_1} , be the new *start* and *accepting* states of M_1 and M_2 , respectively:
 - a) $L(M_1) \cup L(M_2)$: a string can be processed by M_1 and M_2 in parallel



b) $L(M_1) \bullet L(M_2)$: a string is processed by the composite machine sequentially





3.3 Regular Grammars

- A grammar is defined as a quadruple (V, Σ, P, S) , where
 - > V is a finite set of *nonterminals*, or *variables*
 - $\rightarrow \sum$ is a finite set of *terminals*
 - $\gt S \in V$, is a *start symbol*, and
 - P is a finite set of rewrite/production rules of the form $\alpha \to \beta$, where $\alpha \in (V \cup \Sigma)^*$, $\beta \in (V \cup \Sigma)^*$
- Defn 3.3.1. A regular grammar is a grammar in which each rule has one of the following forms, where $A, B \in V$ and $a \in \Sigma$
 - (i) $A \rightarrow a$
 - (ii) $A \rightarrow aB$
 - (iii) $A \rightarrow \lambda$
 - A language is regular if it can be generated by a regular grammar
 - Regular grammars generate precisely the languages defined by regular expressions
 - Regular expressions are used to abbreviate the descriptions of regular sets

3.3 Regular Grammars

Example. Given $G = (V, \Sigma, P, S)$, where

$$P = \{ S \rightarrow xX \\ X \rightarrow yY \\ Y \rightarrow xX \\ Y \rightarrow \lambda \}$$
$$\Leftrightarrow (xy)^{+}$$

Example. Let $G = (V, \Sigma, P, S)$, where

$$P = \{ S \rightarrow aA$$

$$A \rightarrow aA \mid bB$$

$$B \rightarrow aB \mid bC$$

$$C \rightarrow aC \mid \lambda \}$$

$$\Leftrightarrow a^{+}ba^{*}ba^{*}$$

Other examples: Examples 3.29, 3.2.10, 3.2.11, 3.2.12

- Claim(2). Every language accepted by a FSA is regular by constructing a RE
- Defn. 6.2.1 An expression graph is a labeled digraph in which arcs are labeled by regular expressions.
 - Paths in expression graphs generate regular expressions
- Algorithm 6.2.2 Construction of a regular expression from a FSA
 - Produce an arbitrary expression graph by repeatedly removing nodes from the state diagram.
 - Produce the language of the FSA by the union of the sets of strings whose processing successfully terminates in one of the accepting states
 - Case 1.2.1

 (i) $j \xrightarrow{w_{j,i}} i \xrightarrow{w_{i,k}} k$ $j \xrightarrow{w_{j,i} w_{i,k}} k$ (ii) $j \xrightarrow{w_{j,i}} i \xrightarrow{w_{i,k}} k$ $j \xrightarrow{w_{j,i} (w_{i,i}) * w_{i,k}} k$

Algorithm 6.2.2 Construction of a Regular Expression from a Finite Automaton

input: state diagram G of a finite automaton with one accepting state

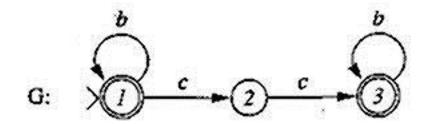
Let q_0 be the start state and q_t the accepting state of G.

- repeat
- → 1.1. choose a node q_i that is neither q₀ nor q_t
 - 1.2. delete the node q_i from G according to the following procedure:
 - \longrightarrow 1.2.1 for every j, k not equal to i (this includes j = k) do
 - i) if $w_{j,i} \neq \emptyset$, $w_{i,k} \neq \emptyset$ and $w_{i,i} = \emptyset$, then add an arc from node j to node k labeled $w_{j,i}w_{i,k}$
 - ii) if $w_{j,i} \neq \emptyset$, $w_{i,k} \neq \emptyset$ and $w_{i,i} \neq \emptyset$, then add an arc from node q_i to node q_k labeled $w_{j,i}(w_{i,i})^*w_{i,k}$
 - iii) if nodes q_j and q_k have arcs labeled w_1, w_2, \ldots, w_s connecting them, then replace the arcs by a single arc labeled $w_1 \cup w_2 \cup \cdots \cup w_s$
 - 1.2.2 remove the node q_i and all arcs incident to it in G until the only nodes in G are q₀ and q_t
- determine the expression accepted by G

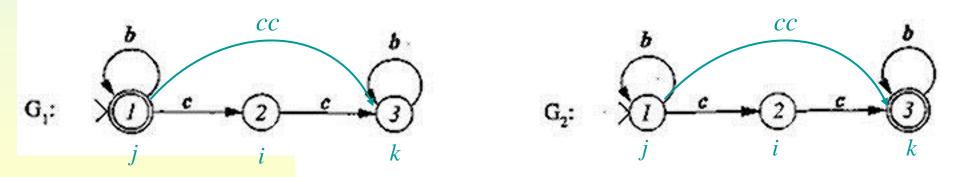
Note. If there are multiple final states in the given FSA M, then for each accepting state F, we produce an expression for the strings accepted by F. The language accepted by M is the *union* of the regular expressions.

Example

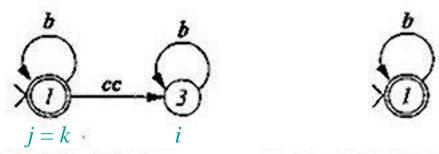
The reduction technique of Algorithm 6.2.2 is used to generate a regular expression for the language of the NFA with state diagram G.



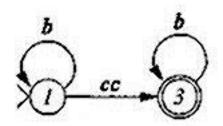
Two expression graphs, each with a single accepting node, are constructed from G.



Reducing G₁ consists of deleting nodes 2 and 3 yielding



The expression accepted by G1 is b*. The removal of node 2 from G2 produces



There is no such *i* that is neither the *start state* nor a *final state*

with associated expression b^*ccb^* The expression accepted by G, built from the expressions accepted by G_1 and G_2 , is $b^* \cup b^*ccb^*$

6.3 Regular Grammars and FA

- Given a regular grammar G, there exists a NFA M such that L(G) = L(M)
- Theorem. 6.3.1 Let $G = (V, \sum, P, S)$ be a regular grammar. Define the NFA $M = (Q, \sum, \delta, S, F)$ as follows:
 - a) $Q = \begin{cases} V \cup \{Z\}, \text{ where } Z \notin V, \text{ if } P \text{ contains a rule } A \rightarrow a \\ V & \text{O.W.} \end{cases}$
 - b) $\delta(A, a) = B$ whenever $A \rightarrow aB \in P$ $\delta(A, a) = Z$ whenever $A \rightarrow a \in P$
 - C) $F = \begin{cases} \{A \mid A \to \lambda \in P\} \cup \{Z\}, & \text{if } Z \in Q \\ \{A \mid A \to \lambda \in P\} & \text{O.W.} \end{cases}$

Then L(M) = L(G)

6.3 Regular Grammars and FA

■ Example 6.3.1 Given $G = (V, \Sigma, P, S)$, where $V = \{S, B\}$, $\Sigma = \{a, b\}$, and $P = \{S \rightarrow aS \mid bB \mid a, B \rightarrow bB \mid \lambda\}$, the corresponding NFA $M = (Q, \Sigma, \delta, S, F)$, where

Q = { S, B, Z},

$$\Sigma = \{ a, b \},$$

 $\delta(S, a) = S, \delta(S, b) = B, \delta(S, a) = Z, \delta(B, b) = B,$
 $F = \{ B, Z \}$

- Theorem 6.3.2 Given an NFA M, there exists a regular grammar G .∋. L(M) = L(G).
 - (i) V = Q
 - (ii) The transition $\delta(A, a) = B$ yields the rule $A \rightarrow aB$ in G
 - (iii) For each accepting state C, create the rule $C \to \lambda$ in G
- Example 6.3.4

P:
$$S \rightarrow bB$$
, $S \rightarrow aA$; $B \rightarrow bS$, $B \rightarrow aC$, $B \rightarrow \lambda$; $A \rightarrow aS$, $A \rightarrow bC$; $C \rightarrow bA$, $C \rightarrow aB$;

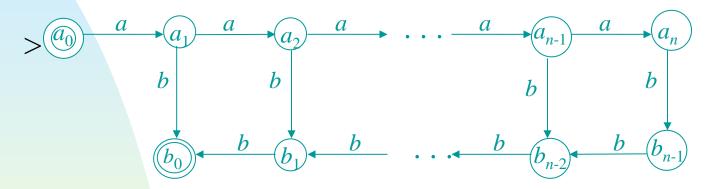
6.4 Regular Languages

- A language over an alphabet Σ is <u>regular</u> if it can be
 - i) specified as a *regular set/expression* over Σ
 - ii) accepted by DFA / NFA / NFA-λ
 - iii) generated by a regular grammar
- Regular languages are <u>closed</u> under ∪, •, *, ⁻, and ∩ since applying any of these operations to regular languages produces a regular language.
- Theorems 6.4.1, 6.4.2, 6.4.3
 - Let L_1 and L_2 be two regular languages. Then $L_1 \cup L_2$, L_1L_2 , L_1^* , \overline{L} , and $L_1 \cap L_2$ are regular languages.
- Example 6.4.1 $(a \cup b)^*aa(a \cup b)^* \cap (a \cup b)^*bb(a \cup b)^*$ is regular

6.5 A Nonregular Language

The language $\{a^ib^i \mid 0 \le i \le n\}$ is regular, but the language $\{a^ib^i \mid i \ge 0\}$ is not.

Proof.



However, this technique cannot be extended to accept the language $\{a^ib^i \mid i \geq 0\}$ since an *infinite* number of states are needed.

Theorem 6.5.1 (P. 204). The language { aⁱbⁱ | i ≥ 0 } is not regular (see a sketched proof in Example 6.6.3).

6.5 A Nonregular Language

Corollary 6.5.2 (Proof of Theorem 6.5.1) Let L be a language over ∑. If

```
U_i \in \Sigma^* and V_i \in \Sigma^*, i \ge 0, \ni. U_i V_i \in L and U_i V_j \notin L, i \ne j,
```

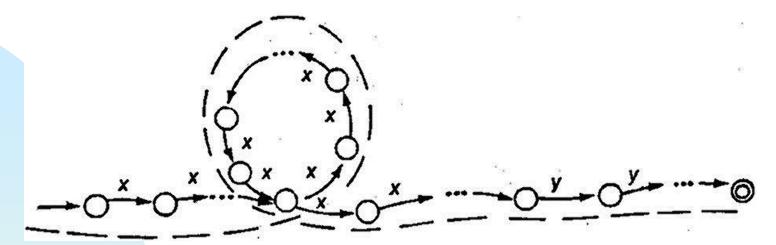
then *L* is <u>not</u> *regular*, i.e., a language that generates strings with *equal length* of two distinct substrings is <u>not</u> *regular*.

- Example 6.5.1 The set of palindromes over { a, b } is not regular.
- Example 6.5.2 Regular grammars are not a sufficiently powerful tool to define programming languages containing nesting of parentheses.
- Example 6.5.3 The language L = { aⁱbⁱ | i, j ≥ 0 and i ≠ j } is not regular; otherwise, L, i.e., { aⁱbⁱ | i ≥ 0 }, is regular.

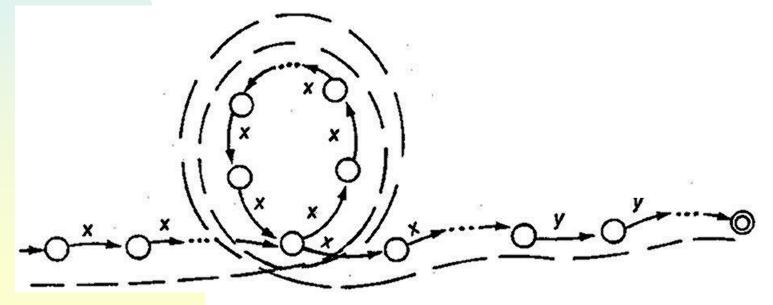
6.6 The Pumping Lemma for Regular Languages

- The pumping lemma can be used to show a language is nonregular.
- Pumping a string refers to constructing new strings by repeating/pumping substrings in the original string.
- Processing a substring of a string in a DFA M correspond to generating a path in the state diagram of M.
- The proofs of nonregular languages using pumping lemma adopts a simple counting argument known as the pigeonhole principle.
- Lemma 6.6.1 Let G be the state diagram of a DFA with k states. Any path of length k in G contains a cycle.
 - Proof: A path P of length k contains k+1 nodes (states). Since there are only k nodes in G, one of the nodes, q, must occurs in P at least twice. The subpath from the first q to the second q yields a cycle.

The portion of a transition that accepts both $x^k y^k$ and $x^{k+n} y^k$



a. The path traversed when accepting $x^k y^k$



b. The path traversed when accepting $x^{k+n}y^k$, where n is the length of the cycle

6.6 The Pumping Lemma for Regular Languages

- Corollary 6.6.2. Let G be the state diagram of a DFA with k states, and let p be a path of length k or more. The path p can be decomposed into sub paths (some of them can be empty) q, r, & s, where p = qrs, |qr| ≤ k & r is a cycle.
- Theorem 6.6.3 (Pumping Lemma for Regular Languages)
 Let L be a regular language that is accepted by a DFA M with k states. Let $Z \in L$ with $|Z| \ge k$, and let Z = uvw such that $|uv| \le k$, |v| > 0, and $uv^iw \in L$, $\forall_{i \ge 0}$
- Example 6.6.3. Show that $L = \{a^ib^i \mid i \ge 0\}$ is nonregular. Assume that L is regular accepted by a DFA M with k states. Let $Z \in L$ with $|Z| \ge k > 0$ & $Z = a^kb^k$ such that $U = a^i$, $v = a^i$, and $w = a^{k-i-j}b^k$

Pumping v twice yields the string

$$uv^2w = a^i a^j a^j a^{k-i-j} b^k = a^k a^j b^k \notin L$$
, since $k + j > k$.