Chapter 5

Finite Automata

5.1 Finite State Automata

 Capable of recognizing numerous symbol patterns, the class of regular languages

Suitable for pattern-recognition type applications, such as the *lexical analyzer* of a compiler

 An abstract (computing) machine *M*, which is *implementation independent*, can be used to determine the acceptability (the outputs) of input strings (which make up the language of *M*)

Lexical Analyzer

 Recognizes occurrences of (valid/acceptable) strings concisely

- **Use a (state) transition diagram for producing lexical** analysis routines, e.g., Figure 1 (next page) ►
- **Use a transition table whose entries provide a** summary of a corresponding transition diagram, which consists of rows (representing *states*), columns (representing symbols) and EOS (End_of_string)
	- \triangleright Entries of a transition table contain the values "accept", "error", next states. e.g., Figure 3 ►
- Can be encoded in a program segment, e.g., Figure 2

Transition Diagram and Table

Figure 1. A transition diagram representing the syntax of a *variable name*

Figure 2. A transition table constructed from the transition diagram of Figure 1 \blacktriangle

Instruction Sequence

State $:= 1$;

Read the next symbol from input; While not end-of-string do

Case State of

- 1: If the current symbol is a letter then State $:= 3$, else if the current symbol is a digit then State $:= 2$, else exit to error routine;
- 2: Exit to error routine;
- 3: If the current symbol is a letter then State $:= 3$, else if the current symbol is a digit then State $:= 3$, else exit to error routine;

Read the next symbol from the input;

End while;

If State not 3 then exit to error routine;

5.2 Deterministic Finite Automaton

- DFA (Deterministic Finite Automaton) is a quintuple $M = (Q, \Sigma, \delta, q_0, F)$, where
	- *1) Q* is a finite set of states
	- $2)$ Σ is a finite set of (machine) alphabet
	- 3) δ is a transitive function from $Q \times \Sigma$ to Q , i.e., δ : $Q \times \Sigma \rightarrow Q$
	- *4)* $q_0 \in \mathbb{Q}$, is the start state
	- \mathcal{F} \subset Q, is the set of final (accepting) states

Transition Diagram

Figure 5. A transition diagram representing the syntax of a *real number*

Transition Table

Table 1. A transition table constructed from the transition diagram of the previous figure

Deterministic Finite Automaton

Figure 6. A representation of a deterministic finite automaton

Computation in DFA

$$
M: Q = \{q_0, q_1\} \quad \delta(q_0, a) = q_1
$$

\n
$$
\Sigma = \{a, b\} \quad \delta(q_0, b) = q_0
$$

\n
$$
F = \{q_1\} \quad \delta(q_1, a) = q_1
$$

\n
$$
\delta(q_1, b) = q_0
$$

Figure 5.2 Computation in a DFA

State Diagrams

- **Defith 5.3.1.** The state diagram of a DFA $M = (Q, \Sigma, \delta, q_0,$ *F*) is a labeled graph *G* defined by the following:
	- i. For each node $N \in G$, $N \in Q$
	- ii. For each arc $E \in G$, label($E \in \Sigma$
	- *iii.* q_0 is depicted
	- iv. For each $f \in F$, *f* is depicted $\left(\bigcirc \right)^n$
	- v. For each $\delta(q_i, a) = q_i$, $\exists E(q_i, q_j)$ and $\text{label}(E) = a$

a transition is represented by an *arc*

- vi. For each $q_i \in \mathbb{Q}$ & $a \in \Sigma$, $\exists!$ $E(q_i, q_i)$ & label(E) = a, where $q_i \in \mathbb{Q}$
- Example: Construct the state diagram of *L*(*M*) for DFA *M*:

 $L(M) = \{w \mid w \text{ contains at least one 1 and an even number of 0 follow}\}$ the first 1}

Definitions

- **Defith 5.2.2.** Let $m = (Q, \Sigma, \delta, q_0, F)$ be a DFA. The language of *m*, denoted *L*(*m*), is the set of strings in Σ^* accepted by *m*.
- **Defn 5.2.3 (Machine configuration). The function** $\frac{1}{M}$ ("yields") on $Q \times \Sigma^+$ is defined by

 $[q_i, \, a {\sf w}] \bigm|_{M} [\delta(q_i, \, a), \, {\sf w}]$ where $a \in \Sigma$, $w \in \Sigma^*$, and $\delta \in M$. Also, $[q_i, u] \big|_M^* [q_j, v]$ *

denotes a sequence of 0 or more transitions.

Defin. 5.2.4. The function $\hat{\delta}$ ($\frac{A}{M}$): $Q \times \Sigma^* \rightarrow Q$ of a DFA is called the extended transition function such that $\triangleright \delta(q_i, ua) = \delta(\delta(q_i, u), a)$ $\hat{\delta}$ $\left(\frac{*}{\sqrt{2}}\right)$ \wedge \wedge \wedge

State Diagrams (Continued)

 Example: Give the state diagram of a DFA *M* such that *M* accepts all strings that start and end with *a*, or that start and end with *b*, i.e., *M* accepts strings that start and end with the same symbol, over the alphabet $\Sigma = \{a, b\}$

 Note: Interchanging the accepting states and non-accepting states of a state diagram for the DFA *M* yields the DFA *M*' that accepts *all* the strings over the same alphabet that are not accepted by *M*.

DFA and State Diagrams

- Construct a DFA that accepts one of the following languages over the alphabet $\{0, 1\}$
	- i. "The set of all strings ending in 00".
	- ii. "The set of all strings when interpreted as a binary integer, is a multiple of 5, e.g., strings 101, 1010, and 1111 are in the language, whereas 10, 100, and 111 are not".

State Diagrams

Theorem 5.3.3. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Then $M = (Q, \Sigma, \delta, q_0, Q - F)$ is a DFA w/ $L(M) = \Sigma^* - L(M)$

Proof: Let $w \in \sum^*$ and $\hat{\delta}$ be the extended transition function constructed form δ . For each $w \in L(M)$, $\hat{\delta}(q_o, w) \in F$. Thus, λ $w \notin L(M')$. Conversely, if $w \notin L(M)$, then $\hat{\delta}(q_0, w) \in Q$ - *F* and thus $w \in L(M)$.

- \ge Examples 5.3.7 and 5.3.8 (page 157)
- An incompletely specified DFA *M* is a machine defined by a partial function from $Q \times \Sigma$ to Q such that M halts as soon as it is possible to determine that an input string is (not) acceptable. <u>of</u>: Let $w \in \Sigma^*$ and $\hat{\delta}$ be the extended transition function
onstructed form δ . For each $w \in L(M)$, $\hat{\delta}(q_o, w) \in F$. Then $\hat{\epsilon}(W)$. Conversely, if $w \notin L(M)$, then $\hat{\delta}(q_o, w) \in Q \cdot F$
us $w \in L(M)$.
xamples 5.3.7 an
	- *M* can be transformed into an equivalent DFA by adding a non-accepting "error" state and transitions out of all the

5.4. Non-deterministic Finite Automata(NFA)

- **Relaxes the restriction that all the outgoing arcs of a state** must be labeled with *distinct symbols* as in DFAs
- The transition to be executed at a *given state* can be *uncertain*, i.e., > 1 possible transitions, or no applicable transition.
- Applicable for applications that require *backtracking* technique.
- Defn 5.4.1 A non-deterministic finite automaton is a quintuple $M = (Q, \Sigma, \delta, q_0, F)$, where
	- *i. Q* is a finite set of *states*
	- ii. Σ is a finite set of symbols, called the *alphabet*
	- *iii.* $q_0 \in \mathbb{Q}$ the *start state*
	- *iv.* $F \subseteq Q$, the set of *final (accepting)* states
	- v. δ is a total function from $(Q \times \Sigma)$ to $\wp(Q)$, known as the *transition function*

NFA

Every DFA is an NFA, and vice versa

1

0,1

>

Hence, in an NFA, it is possible to have $(p, a, q_1) \in \delta$ and $(p, a, q_2) \in \delta$, where $q_1 \neq q_2$

Example. Consider the following state diagram of NFA *M*:

 M stays in the start state until it "guesses" that it is three places from the end of the computation.

 (q_0) \longrightarrow (q_1) \longrightarrow (q_2) \longrightarrow (q_3)

 $\overline{0,1}$ \overline{q} $\overline{0,1}$

Advantages of NFAs over DFAs

- Sometimes DFAs have many more states, conceptually more complicated
- **Understanding the functioning of the NFAs is much easier.**
	- \triangleright Example 5.4.2 $M_1(\mathsf{DFA})$ and $M_2(\mathsf{NFA})$ accept $(\mathsf{a} \cup \mathsf{b})^*$ bb $(\mathsf{a} \cup \mathsf{b})^*$

 Example 5.4.3 An NFA accepts strings over { *a*, *b* } with substring *aa* or *bb*.

5.5 Lambda Transitions

- A transition of any finite automata which shifts from one state to another without reading a symbol from the input tape is known as λ -transition
- λ -transition is labeled by λ on an *arc* in the state transition diagram
- **-** λ -transition represent another form of *non-DFA computations*
- **Provide a useful tool for designing finite automata to accept** *complex languages*
- **Defn. 5.5.1. An NFA with** λ **-transition, denoted** *NFA-* λ **, is a** quintuple $M = (Q, \Sigma, \delta, q_0, F)$, where

i) *Q*, Σ , q_o , and *F* are the same as in an NFA

ii) δ : $Q \times (\sum \cup \{\lambda\}) \rightarrow \wp(Q)$

- Example 5.5.1 (\cup) and compared with the equivalent DFA in Ex. 5.3.3
- Example 5.5.2 (\bullet) and Example 5.5.3 (\ast)

5.5 Lambda Transitions

that accept $(a \cup b)^*bb(a \cup b)^*$ and $(b \cup ab)^*(a \cup \lambda)$, respectively. Composite machines are built by appropriately combining the state diagrams of M_1 and M_2 ,

Example 5.5.2

An NFA- λ that accepts $L(M_1)L(M_2)$, the concatenation of the languages of M_1 and M_2 , is constructed by joining the two machines with a lambda arc.

Example $5.5.3$

Lambda transitions are used to construct an NFA- λ that accepts all strings of even length over $\{a, b\}$. First we build the state diagram for a machine that accepts strings of length two. $((a\cup b)(a\cup b))^{*}$

Example 5.5.1 The language of the NFA- λ M is $L(M_1) \cup L(M_2)$.

5.6. Removing Non-determinism

- Given any NFA $(-\lambda)$, there is an equivalent DFA.
- **Defith 5.6.1.** The λ -closure of a state q_i , denoted λ -closure(q_i), is defined recursively by
	- (i) Basis: $q_i \in \lambda$ -closure(q_i)
	- (ii) Recursion: let $q_j \in \lambda$ -closure(q_i) and $q_k \in \delta(q_j, \lambda)$ \Rightarrow $q'_{k} \in \lambda$ -closure(q_{i})

(iii) Closure: each $q_j \in \lambda$ -closure(q_j) is obtained by a number of applications of (ii)

Defith 5.6.2. The input transition function t of an NFA- λ **M =** $(Q, \Sigma, \delta, q_0, F)$ is a function from $Q \times \Sigma \rightarrow \wp(Q)$ such that

$$
t(q_i, a) = \underbrace{\bigcup_{q_j \in \lambda \text{-closure}(q_i)} \lambda \text{-closure}(\delta(q_j, a))}_{(1)}
$$

t is used to construct an equivalent DFA

Removing Non-determinism

- **Example: Consider the transition diagram in Fig. 5.3 on p. 171** to compute $t(q_1, a)$: λ -closure(*q*₁) = { *q*₁, *q*₄} $t(q_1, a) = \lambda$ -closure($\delta(q_1, a)$) λ -closure($\delta(q_4, a)$) $= \lambda$ -closure({ q_2 }) \cup λ -closure({ q_5 }) $= \{ q_2, q_3 \} \cup \{ q_5, q_6 \}$ $= \{ q_2, q_3, q_5, q_6 \}$ q_1 ² *a* $\sqrt{q_4}$ q_2^2 *q*5 *q*3 *q*6 λ $a \stackrel{\sim}{\smile} \lambda$
- Given $M = (Q, \Sigma, \delta, q_0, F)$, $t = \delta$ iff there is <u>no</u> λ -transition in δ
- \blacksquare Example 5.6.1.
- To remove the non-determinism in an $NFA(-\lambda)$, an equivalent DFA simulates the exploration of all possible computations in the NFA $(-\lambda)$
	- \triangleright the nodes of the DFA are sets of nodes from the NFA(- λ)
	- 22 \rightarrow node $Y \subseteq Q$ in NFA(- λ) can be reached from node $X \subseteq Q$ in NFA(- λ) on '*a*' if $\exists q \in Y$ and $\exists p \in X$ such that $\delta(p, a)$ a q in the DFA

Removing Non-determinism

 Example 5.6.1. Transition tables are given (below) for the *transition function* . Compute the *input transition function t* of the NFA- λ with state diagram *M*. The language of *M* is $a^+c^*b^*$

 ${q_1}$

Ø

 q_1

 $q₂$

Ø

Ø

Ø

 ${q_2}$

Ø

 ${q_1}$

DFA Equivalent to NFA-λ

- Algorithm 5.6.3. Construction of DM, a DFA Equivalent to $NFA-\lambda$ Input: an NFA- λ $M = (Q, \Sigma, \delta, q_0, F)$, input transition function *t* of M
- 1. Initialize Q' to { λ -closure(q_0) }
	- 2. Repeat
		- 2.1. IF there is a node $X \in \mathbb{Q}^7$ and a symbol $a \in \Sigma$ with no arc leaving *X* labeled *a*, THEN

2.1.1. Let $Y = \bigcup_{q_i \in X} t(q_i, a)$

- 2.1.2. IF $Y \notin Q'$, THEN set $Q' = Q' \cup \{Y\}$
- 2.1.3. Add an arc from *X* to *Y* labeled *a*

ELSE *done* := true

UNTIL *done*

3. the set of accepting states of DM is

 $F = \{ X \in \mathbb{Q}^r | X \text{ contains } q_i \in F \}$

Removing Non-determinism

Example. Consider the *t*-transition table for Example 5.6.1

Theorem 5.6.4. Let $w \in \sum^*$ and $Q_w = \{q_{w_1}, ..., q_{w_i}\}$ be the set of states entered upon the completion of the processing of the string *w* in *M*. Processing *w* in DM terminates in state *Q^w* . (Prove by induction on |*w*|.)

Determinism and Non-determinism

- Corollary 5.6.5. The finite automata *M* and *DM* (as shown in Algorithm 5.6.3) are \equiv .
- **Example 5.6.2 and Example 5.6.3 show NFA** \Rightarrow **DFA**
- (Transformation) Relationships between the classes of finite automata:

$$
\mathsf{DFA} \quad \Leftarrow \quad \mathsf{NFA}\text{-}\lambda
$$
\n
$$
\subseteq \quad \mathsf{NFA}
$$