Chapter 5

Finite Automata

5.1 Finite State Automata

=« Capable of recognizing numerous symbol patterns,
the class of reqular languages

« Suitable for pattern-recognition type applications,
such as the lexical analyzer of a compiler

« An abstract (computing) machine M, which is
Implementation independent, can be used to
determine the acceptability (the outputs) of
Input strings (which make up the language of M)

Lexical Analyzer

Recognizes occurrences of (valid/acceptable) strings
concisely

Use a (state) transition diagram for producing lexical
analysis routines, e.g., Figure 1 (next page) »

Use a transition table whose entries provide a
summary of a corresponding transition diagram,
which consists of rows (representing states),
columns (representing symbols) and EOS
(End_of_string)

> Entries of a transition table contain the values “accept’,
“‘error’, next states. e.g., Figure 3 »

Can be encoded in a program segment, e.g., Figure 2 »

3

Transition Diagram and Table

letter
letter '

©)

‘ digit

digit ©

Figure 1. A transition diagram representing the syntax
of a variable name »

letter digit EQS
1 3 2 error
2 error error error
3 3 3 accept

Figure 2. A transition table constructed from the transition diagram of Figure 1 < »

Instruction Sequence

letter digit EOS
D 1 3 2 error
State := 1, : 2 error error error
Read the next symbol from input; 3 3 3 accept
While not end-of-string do
Case State of

1: If the current symbol is a letter then State := 3,

else if the current symbol is a digit then State := 2,
else exit to error routine;
2: Exit to error routine;

3: If the current symbol is a letter then State := 3,

else if the current symbol is a digit then State := 3,
else exit to error routine;

Read the next symbol from the input;
End while;

If State not 3 then exit to error routine;

Figure 3. An instruction sequence suggested by the transition diagram of Figure 1

5.2 Deterministic Finite Automaton

DFA (Deterministic Finite Automaton) is a quintuple
M=(Q, %, 9, dy F), where

1) Qs a finite set of states

2) 2 Is a finite set of (machine) alphabet

3) 0 Is a transitive function from Q x X to Q, I.e.,
0.0xX—>Q

4 Qg € Q, Is the start state

55 F < Q, Is the set of final (accepting) states

letter
letter
digit

digit

Transition Diagram

digit

Figure 5. A transition diagram representing the syntax of a real number

Transition Table

digit o E + - EOS
2 error | error | error | error | error
3 5 error | error error
error | error | error | error | error
error 5 error | error | accept
error | error 6 6 error
error | error | error | error | error
{ error | error | error | error | accept

~NOoO OB WD
N N IN

Table 1. A transition table constructed from the transition
diagram of the previous figure

Deterministic Finite Automaton

Input tape

—> A
tape head e

head moves in this direction

state indicator

control mechanism

Figure 6. A representation of a deterministic finite automaton = <

Computation in DFA

M: Q={do, g1} 9(qo, @) =0s
X={a,b} (g0 b)=0qo
F={a:} 9o(quna)=0q:

(g1, b) = qo
a b a
f
do
a b a
f‘
I
a b a
f
do
a b a
f
d1

Figure 5.2 Computation in a DFA

State Diagrams

« Defn 5.3.1. The state diagram of a DFA M = (Q, 2., 5, q,,
F) is a labeled graph G defined by the following:

i. ForeachnodeN € G,N e Q

i. ForeacharcE € G, label(E) € 2.

ii. g is depicted >{)

iv. Foreachf e F, fis depicted @

v. For each &(qi, @) = g;, 3 E(qi, g;) and label(E) = a

> a transition is represented by an arc
vi. Foreachgie Q &a € 2, 3! E(q;, q) & label(E) = a, where gje Q

« Example: Construct the state diagram of L(M) for DFA M:

L(M) = {w | w contains at least one 1 and an even number of O follow
the first 1}

0 1 0 1
(@)@, T 1

Definitions

Defn 5.2.2. Letm = (Q, %, 4, q,, F) be a DFA. The
language of m, denoted L(m), is the set of strings
In X* accepted by m.

Defn 5.2.3 (Machine configuration). The function ks
(“yields”) on Q x X* is defined by

[Q;, aw]

v [, @), W]

wherea € X, w € 2* and 6 € M. Also,

[ai, u] b [0, V]

denotes a sequence of 0 or more transitions.

Defn. 5.2.4. The function s (k): Q X =* — Q of a DFA
IS called the extended transition function such that

- &a;, ua) = §Xq; u), a))

12

State Diagrams (Continued)
Example: Give the state diagram of a DFA M such that M

accepts all strings that start and end with a, or that start
and end with b, i.e., M accepts strings that start and
end with the same symbol, over the alphabet > = {a, b}

a b

YORRC
>

Note: Interchanging the accepting states and non-accepting
states of a state diagram for the DFA M yields the
DFA M’ that accepts all the strings over the same
alphabet that are not accepted by M.

13

DFA and State Diagrams

= Construct a DFA that accepts one of the following
languages over the alphabet { O, 1}

i. “The set of all strings ending in 00”.

i. “The set of all strings when interpreted as a binary integer, is
a multiple of 5, e.g., strings 101, 1010, and 1111 are Iin
the language, whereas 10, 100, and 111 are not”.

14

State Diagrams

« Theorem 5.3.3. LetM =(Q, 2, d, qy, F) be a DFA. Then
M =(Q, 2, 95,0y Q-F)isaDFAw/L(M’) =2>2*-L(M)

Proof: Letw € >* and 5§ be the extended transition function
constructed form 8. For each w e L(M), 5(q,, W) € F. Thus,

w ¢ L(M’). Conversely, if w ¢ L(M), then 5(q,, w) € Q - F and
thus w € L(M’).

> Examples 5.3.7 and 5.3.8 (page 157)

= An incompletely specified DFA M is a machine defined by
a partial function from Q x 2 to Q such that M halts
as soon as it is possible to determine that an input
string is (not) acceptable.

> M can be transformed into an equivalent DFA by adding a
non-accepting “error” state and transitions out of all the
states in M with other input symbols to the “error” state.

5.4. Non-deterministic Finite Automata(NFA)

Relaxes the restriction that all the outgoing arcs of a state
must be labeled with distinct symbols as in DFAs

The transition to be executed at a given state can be
uncertain, i.e., > 1 possible transitions, or no
applicable transition.

Applicable for applications that require backtracking technique.»

Defn 5.4.1 A non-deterministic finite automaton Is a
quintuple M = (Q, 2., 6, 4o, F), where

i. Qs afinite set of states

i. 2 Is a finite set of symbols, called the alphabet
i. gy € Q the start state

iv. Fc Q, the set of final (accepting) states

v. 0 is atotal function from (Q x 2)) to % (Q), known as the
transition function 16

NFA

Every DFA is an NFA, and vice versa

> Hence, in an NFA, it is possible to have (p, a, d,) € and
(p! a, q2) S 8, where ql + q2

Deterministic Non-deterministic
Computation Computation
(start / \
(AN
(_ '/ e
* accept or reject reject e accept <

Example. Consider the following state diagram of NFA M:

0,1

Ol 0,1 0,1

> M stays in the start state until it “guesses” that it is three
places from the end of the computation.

17

Advantages of NFAs over DFAs

« Sometimes DFAs have many more states, conceptually
more complicated

« Understanding the functioning of the NFAs is much easier.

> Example 5.4.2 M,;(DFA) and M,(NFA) accept (a v b)* bb (a U b)*

e b b M aﬁ a

> Example 5.4.3 An NFA accepts strings over { a, b } with substring

aa or bb.
a, b 4 a,b
(@Whb o~ b

5.5 Lambda Transitions

A transition of any finite automata which shifts from one
state to another without reading a symbol from the
Input tape is known as A-transition

A-transition is labeled by A on an arc in the state transition
diagram

A-transition represent another form of non-DFA computations

Provide a useful tool for designing finite automata to accept
complex languages

Defn. 5.5.1. An NFA with A-transition, denoted NFA-A, IS a
quintuple M = (Q, 2., 6, 4o, F), where

) Q, 2., 4y, and F are the same as in an NFA
) 3:Qx (Lu{Ar})—> p(Q)

> Example 5.5.1 (v) and compared with the equivalent DFA in Ex. 5.3.3 »

> Example 5.5.2 (o) and Example 5.5.3 (*)» 19

5.5 Lambda TranS|t|ons

‘Example5.5, 1 .
The language of the NFA l M is L{MIJ U L(ng)

that accept (a U b]*bb{a U b) and (b U ab)*(a u l}. respectwely Cumposne machmes
are built by appropriately combining the state diagrams of M; and M,, -

Examp[e 55.2

An NFA-J.. that accepts L{M |]L(M2) the ¢ w:}f the languages of M; and M3y, is
constructed by j _]nlnmg the two machines with a lambda arc. :

L

b PE
Example55.3 Co T : - ' T 5

Lambda transitions are used to construct an NFA-A that accepts all strings of even length & i I
over {a, b}. First we bunld the state dlagram for a machine that accepts strings of length
two, . :
((& ob) (a U*n)) : M
| ® -
2 ab _@ ab 4,

5.6. Removing Non-determinism

Given any NFA(-A), there is an equivalent DFA.

Defn 5.6.1. The A-closure of a state q;,, denoted A-closure(q),
IS defined recursively by

() Basis: g; e A-closure(q;)

() Recursion: let g; € A-closure(q;) and g, € 3(q;, A)
= (, € A-closure(q;)

(i) Closure: each g; € A-closure(q;) is obtained by a number of
applications of (ii)
Defn 5.6.2. The input transition function t of an NFA-A M =
(Q, 2., 8, qq, F) is a function from Q x 2. — o (Q) such that

(3) (2)

t(g,a)=) A—closure(5(q;,a))
aj e/"rcLoksure(tﬁ)
(1)
> tis used to construct an equivalent DFA

Removing Non-determinism

Example: Consider the transition diagram in Fig. 5.3 on p. 171
to compute t(q, , a):

A-closure(q,) = { 01, 04} a_o(%) ' (%)
t(q,, @) = A-closure(d(q,, a)) v & 0 (%) (%)
A-closure(5(qy,, a)) 2 -
= A-closure({ g,}) U A-closure({ gz })

={0,, 93} V{0ds g}
={0,, 03, U5, 96 }

Given M = (Q, 2, 9, q,, F), t = 5 iff there is no A-transition in 5 »

Example 5.6.1.

To remove the non-determinism in an NFA(-1), an equivalent
DFA simulates the exploration of all possible computations in
the NFA (-1)

> the nodes of the DFA are sets of nodes from the NFA(-1)

> nhode Y < Q in NFA(-A) can be reached from node X ¢ Q in NFA(-A) on ‘@’
if 3q €Y and 3p e X such that 5(p, a) > q in the DFA > 22

Removing Non-determinism

Example 5.6.1. Transition tables are given (below) for
the transition function 5. Compute the input transition
function t of the NFA-A with state diagram M. The

language of M is a*c*b*

t

Jdo

d:

op)
8 a b c A
. g0 | {g0.q1.92} @ @ 2

q | 9 CTV 9
qz | 8 4 ¢} {}

a b
{00,0:1,0,} {}
{} {a,}
{} {q,}

C

{}

{}

{a,,0;}
) |
<

DFA Equivalent to NFA-A

« Algorithm 5.6.3. Construction of DM, a DFA Equivalent to NFA-A
Input: an NFA-A M = (Q, %, §, q,, F), input transition function t of M

1. Initialize Q' to { A-closure(q,) }
2. Repeat
2.1. IF there is a node X € Q" and a symbol a € 2. with no arc
leaving X labeled a, THEN

2.1.1. LetY =Uyq < x t(q;, @)
21.2. IFY g Q,THENsetQ =Q u{Y}
2.1.3. Add an arc from X to Y labeled a
ELSE done :=true
UNTIL done

3. the set of accepting states of DM is

F={Xe Q| Xcontains g, € F}

24

Removing Non-determinism

= Example. Consider the t-transition table for Example 5.6.1

t a b C
Qo {90:01.92} {1} {}
q; {} {a,} {}
q {} {q,} {050}
o a b C
{0} {do. A1, Ao} ¢ ¢
{do: 91, Q21" {do. A1, Oo} {9;} {0, 95}
CHS ¢ 101} ¢
{01, 9.} ¢ {a.} {01, 95}
b 5 ! 5,

= Theorem5.64.Letwe>*andQ,={q,., ---, 0.} be the
set of states entered upon the complletion of'the
processing of the string w in M. Processing w in DM
terminates in state Q,,. (Prove by induction on |wj|.) 25

Determinism and Non-determinism

« Corollary 5.6.5. The finite automata M and DM (as
shown in Algorithm 5.6.3) are =.

« Example 5.6.2 and Example 5.6.3 show NFA = DFA

« (Transformation) Relationships between the classes of
finite automata:

DFA < NFA-A

-

N

NFA

26

