
Chapter 5

Finite Automata

2

5.1 Finite State Automata

 Capable of recognizing numerous symbol patterns,

 the class of regular languages

 Suitable for pattern-recognition type applications,

 such as the lexical analyzer of a compiler

 An abstract (computing) machine M, which is

 implementation independent, can be used to

 determine the acceptability (the outputs) of

 input strings (which make up the language of M)

3

Lexical Analyzer
 Recognizes occurrences of (valid/acceptable) strings

 concisely

 Use a (state) transition diagram for producing lexical

 analysis routines, e.g., Figure 1 (next page)

 Use a transition table whose entries provide a

 summary of a corresponding transition diagram,

 which consists of rows (representing states),

 columns (representing symbols) and EOS

 (End_of_string)

 Entries of a transition table contain the values “accept”,

 “error”, next states. e.g., Figure 3

 Can be encoded in a program segment, e.g., Figure 2

4

Transition Diagram and Table

3

1

2

letter

digit

letter

digit

letter digit EOS

1 3 2 error

2 error error error

3 3 3 accept

Figure 2. A transition table constructed from the transition diagram of Figure 1

Figure 1. A transition diagram representing the syntax

 of a variable name

5

Instruction Sequence

State := 1;

Read the next symbol from input;

While not end-of-string do

Case State of

1: If the current symbol is a letter then State := 3,

 else if the current symbol is a digit then State := 2,

 else exit to error routine;

2: Exit to error routine;

3: If the current symbol is a letter then State := 3,

 else if the current symbol is a digit then State := 3,

 else exit to error routine;

Read the next symbol from the input;

End while;

If State not 3 then exit to error routine;

Figure 3. An instruction sequence suggested by the transition diagram of Figure 1

letter digit EOS

1 3 2 error

2 error error error

3 3 3 accept

6

5.2 Deterministic Finite Automaton
 DFA (Deterministic Finite Automaton) is a quintuple

 M = (Q, , , q0, F), where

1) Q is a finite set of states

2)  is a finite set of (machine) alphabet

3)  is a transitive function from Q x  to Q, i.e.,

 : Q x   Q

4) q0  Q, is the start state

5) F  Q, is the set of final (accepting) states

3

1

2

letter

digit

letter

digit

7

Transition Diagram

digit

4

1 2

3 5

6

7

digit

digit

digit

digit

digit

digit

E

E
+

-

·

Figure 5. A transition diagram representing the syntax of a real number

8

Transition Table
 digit · E + - EOS

1 2 error error error error error

2 2 3 5 error error error

3 4 error error error error error

4 4 error 5 error error error

5 7 error error 6 6 error

6 7 error error error error error

7 7 error error error error accept

Table 1. A transition table constructed from the transition

 diagram of the previous figure

accept

9

Deterministic Finite Automaton

state indicator
1

4

5

6 2

3

tape head
head moves in this direction

control mechanism

Figure 6. A representation of a deterministic finite automaton

… …
Input tape

10

Computation in DFA

Figure 5.2 Computation in a DFA

M: Q = {q 0 , q 1 }  (q 0 , a) = q 1

  = {a, b}  (q 0 , b) = q 0

 F = { q 1 }  (q 1 , a) = q 1

  (q 1 , b) = q 0

a b a

q 0

a b a

q 1

a b a

q 0

a b a

 q 1

11

State Diagrams

 Defn 5.3.1. The state diagram of a DFA M = (Q, , , q0,

 F) is a labeled graph G defined by the following:

i. For each node N  G, N  Q

ii. For each arc E  G, label(E)  

iii. q0 is depicted

iv. For each f  F, f is depicted

v. For each (qi, a) = qj,  E(qi, qj) and label(E) = a

 a transition is represented by an arc

vi. For each qi  Q & a  , ! E(qi, qj) & label(E) = a, where qj  Q

 Example: Construct the state diagram of L(M) for DFA M:

 L(M) = {w | w contains at least one 1 and an even number of 0 follow

 the first 1}

q0
q1 q2

1

0

0 1 1 0

>

12

Definitions
 Defn 5.2.2. Let m = (Q, , , q0, F) be a DFA. The

 language of m, denoted L(m), is the set of strings

 in * accepted by m.

 Defn 5.2.3 (Machine configuration). The function

 (“yields”) on Q x + is defined by

 [qi, aw] [(qi, a), w]

 where a  , w  *, and   M. Also,

 [qi, u] [qj, v]

 denotes a sequence of 0 or more transitions.

 Defn. 5.2.4. The function (): Q x *  Q of a DFA

 is called the extended transition function such that

 (qi, ua) = ((qi, u), a))

M

M

M
*

M
* 



 

13

State Diagrams (Continued)
 Example: Give the state diagram of a DFA M such that M

 accepts all strings that start and end with a, or that start
 and end with b, i.e., M accepts strings that start and
 end with the same symbol, over the alphabet  = {a, b}

 Note: Interchanging the accepting states and non-accepting
 states of a state diagram for the DFA M yields the
 DFA M’ that accepts all the strings over the same
 alphabet that are not accepted by M.

b a

b a

q0

q1

q2

q3

q4
a

b

b
b

a
a

>

14

DFA and State Diagrams
 Construct a DFA that accepts one of the following

 languages over the alphabet { 0, 1 }

i. “The set of all strings ending in 00”.

ii. “The set of all strings when interpreted as a binary integer, is

 a multiple of 5, e.g., strings 101, 1010, and 1111 are in

 the language, whereas 10, 100, and 111 are not”.

15

State Diagrams

 Theorem 5.3.3. Let M = (Q, , , q0, F) be a DFA. Then

 M’ = (Q, , , q0, Q - F) is a DFA w/ L(M’) = * - L(M)

Proof: Let w  * and be the extended transition function

constructed form .

 Examples 5.3.7 and 5.3.8 (page 157)

 An incompletely specified DFA M is a machine defined by

 a partial function from Q   to Q such that M halts

 as soon as it is possible to determine that an input

 string is (not) acceptable.

 M can be transformed into an equivalent DFA by adding a

 non-accepting “error” state and transitions out of all the

 states in M with other input symbols to the “error” state.













w  L(M’). Conversely, if w  L(M),

For each w  L(M), (q0, w)  F. Thus,

 then (q0, w)  Q - F and

thus w  L(M’).

16

5.4. Non-deterministic Finite Automata(NFA)
 Relaxes the restriction that all the outgoing arcs of a state

 must be labeled with distinct symbols as in DFAs

 The transition to be executed at a given state can be

 uncertain, i.e., > 1 possible transitions, or no

 applicable transition.

 Applicable for applications that require backtracking technique.

 Defn 5.4.1 A non-deterministic finite automaton is a

 quintuple M = (Q, , , q0, F), where

i. Q is a finite set of states

ii.  is a finite set of symbols, called the alphabet

iii. q0  Q the start state

iv. F  Q, the set of final (accepting) states

v.  is a total function from (Q  ) to (Q), known as the

 transition function

17

NFA
 Every DFA is an NFA, and vice versa

 Hence, in an NFA, it is possible to have (p, a, q1)   and
 (p, a, q2)  , where q1  q2

 Example. Consider the following state diagram of NFA M:

 M stays in the start state until it “guesses” that it is three
 places from the end of the computation.

accept reject accept or reject

start

Deterministic

Computation

Non-deterministic

Computation

q0 q2 q1 q3
1

0,1

0,1 0,1
>

18

Advantages of NFAs over DFAs

 Sometimes DFAs have many more states, conceptually

 more complicated

 Understanding the functioning of the NFAs is much easier.

 Example 5.4.2 M1(DFA) and M2(NFA) accept (a  b)* bb (a  b)*

 Example 5.4.3 An NFA accepts strings over { a, b } with substring

 aa or bb.

q0 q1 q2
b

a

b
>

M1:

a, b

a
q0 q1 q2

b

a, b

b
>

M2:

a, b

q0
q4

q2 q1

q3
b b

a
a

>

a, b
a, b

a, b

19

5.5 Lambda Transitions
 A transition of any finite automata which shifts from one

 state to another without reading a symbol from the

 input tape is known as -transition

 -transition is labeled by  on an arc in the state transition

 diagram

 -transition represent another form of non-DFA computations

 Provide a useful tool for designing finite automata to accept

 complex languages

 Defn. 5.5.1. An NFA with -transition, denoted NFA-, is a

 quintuple M = (Q, , , q0, F), where

 i) Q, , q0, and F are the same as in an NFA

 ii) : Q  (  {  })  (Q)

 Example 5.5.1 () and compared with the equivalent DFA in Ex. 5.3.3

 Example 5.5.2 (·) and Example 5.5.3 (*)

20

5.5 Lambda Transitions

M1

M2

M1
M2

M

21

5.6. Removing Non-determinism

 Given any NFA(-), there is an equivalent DFA.

 Defn 5.6.1. The -closure of a state qi, denoted -closure(qi),
 is defined recursively by

(i) Basis: qi  -closure(qi)

(ii) Recursion: let qj  -closure(qi) and qk  (qj, )
  qk  -closure(qi)

(iii) Closure: each qj  -closure(qi) is obtained by a number of
 applications of (ii)

 Defn 5.6.2. The input transition function t of an NFA- M =
 (Q, , , q0, F) is a function from Q   (Q) such that

 t is used to construct an equivalent DFA

(2)

)) , (() , (
) (

a q closure a q t j

q

i

i q closure j

- =

- 


 



(1)

(3)

22

Removing Non-determinism
 Example: Consider the transition diagram in Fig. 5.3 on p. 171

 to compute t(q1 , a):

 -closure(q1) =

 t(q1, a) = -closure((q1, a)) 

 -closure((q4, a))

 = -closure({ q2 }) 

 = { q2, q3 } 

 = { q2, q3, q5, q6 }

 Given M = (Q, , , q0, F), t =  iff there is no -transition in 

 Example 5.6.1.

 To remove the non-determinism in an NFA(-), an equivalent
 DFA simulates the exploration of all possible computations in
 the NFA (-)

 the nodes of the DFA are sets of nodes from the NFA(-)

 node Y  Q in NFA(-) can be reached from node X  Q in NFA(-) on ‘a’

 if q Y and p  X such that (p, a)  q in the DFA

q1

a

 q4

q2

q5

q3

q6



a 

{ q1, q4 }

-closure({ q5 })

{ q5, q6 }

23

Removing Non-determinism
 Example 5.6.1. Transition tables are given (below) for

 the transition function . Compute the input transition

 function t of the NFA- with state diagram M. The

 language of M is a+c*b*

t a b c

q0 { q0,q1,q2 } { } { }

q1 { } { q1 } { }

q2 { } { q1 } { q1,q2 }

24

DFA Equivalent to NFA-
 Algorithm 5.6.3. Construction of DM, a DFA Equivalent to NFA-

 Input: an NFA- M = (Q, , , q0, F), input transition function t of M

 1. Initialize Q’ to { -closure(q0) }

 2. Repeat

 2.1. IF there is a node X  Q’ and a symbol a   with no arc

 leaving X labeled a, THEN

 2.1.1. Let Y = qi  X t(qi, a)

 2.1.2. IF Y  Q’, THEN set Q’ = Q’  { Y }

 2.1.3. Add an arc from X to Y labeled a

 ELSE done := true

 UNTIL done

 3. the set of accepting states of DM is

 F’ = { X  Q’ | X contains qi  F }

25

Removing Non-determinism

 Example. Consider the t-transition table for Example 5.6.1

 ’ a b c

 {q0} {q0, q1, q2}  

 {q0, q1, q2}* {q0, q1, q2} {q1} {q1, q2}

 {q1}*  {q1} 

 {q1, q2}*  {q1} {q1, q2}

    

 Theorem 5.6.4. Let w  * and Qw = { qw1
, …, qwj

} be the
 set of states entered upon the completion of the
 processing of the string w in M. Processing w in DM
 terminates in state Qw. (Prove by induction on |w|.)

t a b c

q0 { q0,q1,q2 } { } { }

q1 { } { q1 } { }

q2 { } { q1 } { q1,q2 }

26

Determinism and Non-determinism

 Corollary 5.6.5. The finite automata M and DM (as

 shown in Algorithm 5.6.3) are .

 Example 5.6.2 and Example 5.6.3 show NFA  DFA

 (Transformation) Relationships between the classes of

 finite automata:

 DFA  NFA-

  

 NFA

