
Chapter 5 

Finite Automata 
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5.1  Finite State Automata 

 Capable of recognizing numerous symbol patterns, 

 the class of regular languages 

 Suitable for pattern-recognition type applications, 

 such as the lexical analyzer of a compiler 

 An abstract (computing) machine M, which is 

 implementation independent, can be used to 

 determine the acceptability (the outputs) of 

 input strings (which make up the language of M) 
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Lexical Analyzer 
 Recognizes occurrences of (valid/acceptable) strings 

 concisely 

 Use a (state) transition diagram for producing lexical 

 analysis routines, e.g., Figure 1 (next page) 

 Use a transition table whose entries provide a 

 summary of a corresponding transition diagram, 

 which consists of rows (representing states), 

 columns (representing symbols) and EOS 

 (End_of_string) 

 Entries of a transition table contain the values “accept”, 

     “error”, next states. e.g., Figure 3 

 Can be encoded in a program segment, e.g., Figure 2 
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Transition Diagram and Table  

3 

1 

2 

letter 

digit 

letter 

digit 

letter digit EOS

1 3 2 error

2 error error error

3 3 3 accept

Figure 2. A transition table constructed from the transition diagram of Figure 1 

Figure 1. A transition diagram representing the syntax   

 of a variable name 
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Instruction Sequence 

State := 1;

Read the next symbol from input;

While not end-of-string do

Case State of

1: If the current symbol is a letter then State := 3,

    else if the current symbol is a digit  then State := 2,

    else exit to error routine;

2: Exit to error routine;

3: If the current symbol is a letter then State := 3,

    else if the current symbol is a digit then State := 3,

    else exit to error routine;

Read the next symbol from the input;

End while;

If State not 3 then exit to error routine;

Figure 3. An instruction sequence suggested by the transition diagram of Figure 1 

letter digit EOS 

1 3 2 error 

2 error error error 

3 3 3 accept 
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5.2  Deterministic Finite Automaton 
 DFA (Deterministic Finite Automaton) is a quintuple 

 M = (Q, , , q0, F), where 

1) Q is a finite set of states 

2)  is a finite set of (machine) alphabet 

3)  is a transitive function from Q x  to Q, i.e., 

 : Q x   Q 

4) q0  Q, is the start state 

5) F  Q, is the set of final (accepting) states 

3 
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2 

letter 

digit 

letter 

digit 
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Transition Diagram 

digit
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Figure 5.  A transition diagram representing the syntax of a real number 
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Transition Table 
 digit · E + - EOS 

1 2 error error error error error 

2 2 3 5 error error error 

3 4 error error error error error 

4 4 error 5 error error error 

5 7 error error 6 6 error 

6 7 error error error error error 

7 7 error error error error accept 

 
Table 1. A transition table constructed from the transition 

 diagram of the previous figure 

accept 
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Deterministic Finite Automaton 

state indicator
1

4

5

6 2

3

tape head
head moves in this direction

control mechanism

Figure 6. A representation of a deterministic finite automaton 

… … 
Input tape 
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Computation in DFA 

Figure 5.2 Computation in a DFA 

M: Q = {q 0 , q 1 }    ( q 0 , a) = q 1   

    = {a, b}    ( q 0 , b) = q 0   

  F = { q 1  }    ( q 1 , a) = q 1   

     ( q 1 , b) = q 0   

      

  

a   b   a       

      

          

    

q 0     

          

a   b   a       

          
q 1         

a   b   a       

          
q 0     

          

a   b   a       

          

      q 1     
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State Diagrams 

 Defn 5.3.1. The state diagram of a DFA M = (Q, , , q0, 

 F) is a labeled graph G defined by the following:  

i. For each node N  G, N  Q 

ii. For each arc E  G, label(E)   

iii. q0 is depicted 

iv. For each f  F, f is depicted 

v. For each (qi, a) = qj,  E(qi, qj) and label(E) = a  

 a transition is represented by an arc 

vi. For each qi  Q & a  , ! E(qi, qj) & label(E) = a, where qj  Q 

 Example: Construct the state diagram of L(M) for DFA M: 

  L(M) = {w | w contains at least one 1 and an even number of 0 follow 

      the first 1}  

q0 
q1 q2 

1 

0 

0 1 1 0 

> 
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Definitions 
 Defn 5.2.2. Let m = (Q, , , q0, F) be a DFA. The 

 language of m, denoted L(m), is the set of strings

 in * accepted by m. 

 Defn 5.2.3 (Machine configuration). The function       

 (“yields”) on Q x + is defined by  

       [qi, aw]      [(qi, a), w] 

 where a  , w  *, and   M.  Also,  

       [qi, u]       [qj, v]  

 denotes a sequence of 0 or more transitions.  

 Defn. 5.2.4. The function    (     ): Q x *  Q of a DFA 

 is called the extended transition function such that 

 (qi, ua) = ((qi, u), a))  

M 

M 

M 
* 

M 
*  
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State Diagrams (Continued) 
 Example: Give the state diagram of a DFA M such that M 

 accepts all strings that start and end with a, or that start 
 and end with b, i.e., M accepts strings that start and 
 end with the same symbol, over the alphabet  = {a, b} 

 
 

 

 

 

 

 

 
 

 Note: Interchanging the accepting states and non-accepting 
     states of a state diagram for the DFA M yields the 
     DFA M’ that accepts all the strings over the same 
     alphabet that are not accepted by M. 

b a 

b a 

q0 

q1 

q2 

q3 

q4 
a 

b 

b 
b 

a 
a 

> 
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DFA and State Diagrams 
 Construct a DFA that accepts one of the following 

 languages over the alphabet { 0, 1 }  

i. “The set of all strings ending in 00”. 

ii. “The set of all strings when interpreted as a binary integer, is 

     a multiple of 5, e.g., strings 101, 1010, and 1111 are in 

     the language, whereas 10, 100, and 111 are not”. 
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State Diagrams  

 Theorem 5.3.3.  Let M = (Q, , , q0, F) be a DFA. Then 

 M’ = (Q, , , q0, Q - F) is a DFA w/ L(M’) = * - L(M) 

Proof: Let w  * and     be the extended transition function 

constructed form .  

 

 Examples 5.3.7 and 5.3.8 (page 157) 

 An incompletely specified DFA M is a machine defined by 

 a partial function from Q   to Q such that M halts 

 as soon as it is possible to determine that an input 

 string is (not) acceptable. 

 M can be transformed into an equivalent DFA by adding a 

 non-accepting “error” state and transitions out of all the 

 states in M with other input symbols to the “error” state. 













w  L(M’). Conversely, if w  L(M),  

For each w  L(M),   (q0, w)  F.  Thus, 

                                                         then   (q0, w)  Q - F and  

thus w  L(M’). 
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5.4. Non-deterministic Finite Automata(NFA) 
 Relaxes the restriction that all the outgoing arcs of a state 

 must be labeled with distinct symbols as in DFAs 

 The transition to be executed at a given state can be 

 uncertain, i.e., > 1 possible transitions, or no 

 applicable transition.  

 Applicable for applications that require backtracking technique. 

 Defn 5.4.1  A non-deterministic finite automaton is a 

 quintuple M = (Q, , , q0, F), where     

i. Q is a finite set of states 

ii.  is a finite set of symbols, called the alphabet 

iii. q0  Q the start state 

iv. F  Q, the set of final (accepting) states 

v.  is a total function from (Q  ) to (Q), known as the      

     transition function  
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NFA 
 Every DFA is an NFA, and vice versa 

 Hence, in an NFA, it is possible to have (p, a, q1)   and      
     (p, a, q2)  , where q1  q2  

 

 

 

 

 

 

 

 Example. Consider the following state diagram of NFA M: 

 
 

  

 M stays in the start state until it “guesses” that it is three     
     places from the end of the computation. 

accept reject accept or reject 

start 

Deterministic 

Computation 

Non-deterministic 

Computation 

q0 q2 q1 q3 
1 

0,1 

0,1 0,1 
> 
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Advantages of NFAs over DFAs 

 Sometimes DFAs have many more states, conceptually 

 more complicated 

 Understanding the functioning of the NFAs is much  easier. 

 Example 5.4.2  M1(DFA) and M2(NFA) accept (a  b)* bb (a  b)* 

 

 

 

 

 

 Example 5.4.3  An NFA accepts strings over { a, b } with substring    

     aa or bb. 

q0 q1 q2 
b 

a 

b 
> 

M1: 

a, b 

a 
q0 q1 q2 

b 

a, b 

b 
> 

M2: 

a, b 

q0 
q4 

q2 q1 

q3 
b b 

a 
a 

> 

a, b 
a, b 

a, b 
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5.5  Lambda Transitions 
 A transition of any finite automata which shifts from one 

 state to another without reading a symbol from the 

 input tape is known as -transition 

 -transition is labeled by  on an arc in the state  transition 

 diagram 

 -transition represent another form of non-DFA computations 

 Provide a useful tool for designing finite automata to accept 

 complex languages 

 Defn. 5.5.1. An NFA with -transition, denoted NFA-, is a 

 quintuple M = (Q, , , q0, F), where  

  i) Q, , q0, and F are the same as in an NFA 

  ii) : Q  (  {  })  (Q) 

 Example 5.5.1  () and compared with the equivalent DFA in Ex. 5.3.3 

 Example 5.5.2  (·) and Example 5.5.3  (*) 
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5.5  Lambda Transitions 

M1 

M2 

M1 
M2 

M 
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5.6. Removing Non-determinism 

 Given any NFA(-), there is an equivalent DFA. 

 Defn 5.6.1. The -closure of a state qi, denoted -closure(qi), 
 is defined recursively by 

(i)   Basis: qi  -closure(qi) 

(ii)  Recursion: let qj  -closure(qi) and qk  (qj, )       
         qk  -closure(qi) 

(iii) Closure: each qj   -closure(qi) is obtained by a number of 
     applications of (ii) 

 Defn 5.6.2. The input transition function t of an NFA- M =    
 (Q, , , q0, F) is a function from Q   (Q) such that 

   

 

 

 
 t is used to construct an equivalent DFA 

(2) 

)) , ( ( ) , ( 
) ( 

a q closure a q t j 
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i 

i q closure j 
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-   
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(3) 
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Removing Non-determinism 
 Example: Consider the transition diagram in Fig. 5.3 on p. 171        

     to compute t(q1 , a):  

     -closure(q1) = 

     t(q1, a) = -closure((q1, a))   

                        -closure((q4, a)) 

                     = -closure({ q2 })  

                     = { q2, q3 }  

                     = { q2, q3, q5, q6 } 

 Given M = (Q, , , q0, F), t =  iff there is no -transition in  

 Example 5.6.1. 

 To remove the non-determinism in an NFA(-), an equivalent  
 DFA simulates the exploration of all possible computations in 
 the NFA (-) 

 the nodes of  the DFA are sets of nodes from the NFA(-) 

 node Y  Q in NFA(-) can be reached from node X  Q in NFA(-) on ‘a’ 

          if q Y and p  X such that (p, a)  q in the DFA 

q1 

a 

 q4 

q2 

q5 

q3 

q6 

 

a  

{ q1, q4 } 

-closure({ q5 }) 

{ q5, q6 } 
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Removing Non-determinism 
 Example 5.6.1. Transition tables are given (below) for 

 the transition function . Compute the input transition 

 function t of the NFA- with state diagram M. The 

 language of M is a+c*b* 

t a b c 

q0 { q0,q1,q2 } { } { } 

q1 { } { q1 } { } 

q2 { } { q1 } { q1,q2 } 
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DFA Equivalent to NFA- 
 Algorithm 5.6.3.  Construction of DM, a DFA Equivalent to NFA- 

 Input: an NFA- M = (Q, , , q0, F), input transition function t of M 

       1.  Initialize Q’ to { -closure(q0) } 

   2.  Repeat 

  2.1.  IF there is a node X  Q’ and a symbol a   with no arc 

                        leaving X labeled a, THEN 

               2.1.1.  Let Y = qi  X  t(qi, a) 

                 2.1.2.  IF Y  Q’, THEN set Q’ = Q’  { Y } 

               2.1.3.  Add an arc from X to Y labeled a 

          ELSE  done := true 

           UNTIL done 

       3.  the set of accepting states of DM is  

   F’ = { X  Q’ | X contains qi  F }  
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Removing Non-determinism 

 Example. Consider the t-transition table for Example 5.6.1 

 

 

 

                      
         ’                          a                     b                  c 

                   {q0}                  {q0, q1, q2}                                

        {q0, q1, q2}*                 {q0, q1, q2}            {q1}           {q1, q2} 

                   {q1}*                                           {q1}                 

              {q1, q2}*                                           {q1}           {q1, q2} 

                                                                                         

 Theorem 5.6.4. Let w  * and Qw = { qw1
, …, qwj 

} be the 
 set of states entered upon the completion of the 
 processing of the string w in M.  Processing w in DM 
 terminates in state Qw. (Prove by induction on |w|.) 

t a b c 

q0 { q0,q1,q2 } { } { } 

q1 { } { q1 } { } 

q2 { } { q1 } { q1,q2 } 
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Determinism and Non-determinism 

 Corollary 5.6.5. The finite automata M and DM (as 

 shown in Algorithm 5.6.3) are . 

 Example 5.6.2 and Example 5.6.3 show NFA  DFA 

 (Transformation) Relationships between the classes of 

 finite automata: 

                          DFA                  NFA- 

                                                        

                                                NFA 


