
Chapter 5

Finite Automata

2

5.1 Finite State Automata

 Capable of recognizing numerous symbol patterns,

 the class of regular languages

 Suitable for pattern-recognition type applications,

 such as the lexical analyzer of a compiler

 An abstract (computing) machine M, which is

 implementation independent, can be used to

 determine the acceptability (the outputs) of

 input strings (which make up the language of M)

3

Lexical Analyzer
 Recognizes occurrences of (valid/acceptable) strings

 concisely

 Use a (state) transition diagram for producing lexical

 analysis routines, e.g., Figure 1 (next page)

 Use a transition table whose entries provide a

 summary of a corresponding transition diagram,

 which consists of rows (representing states),

 columns (representing symbols) and EOS

 (End_of_string)

 Entries of a transition table contain the values “accept”,

 “error”, next states. e.g., Figure 3

 Can be encoded in a program segment, e.g., Figure 2

4

Transition Diagram and Table

3

1

2

letter

digit

letter

digit

letter digit EOS

1 3 2 error

2 error error error

3 3 3 accept

Figure 2. A transition table constructed from the transition diagram of Figure 1

Figure 1. A transition diagram representing the syntax

 of a variable name

5

Instruction Sequence

State := 1;

Read the next symbol from input;

While not end-of-string do

Case State of

1: If the current symbol is a letter then State := 3,

 else if the current symbol is a digit then State := 2,

 else exit to error routine;

2: Exit to error routine;

3: If the current symbol is a letter then State := 3,

 else if the current symbol is a digit then State := 3,

 else exit to error routine;

Read the next symbol from the input;

End while;

If State not 3 then exit to error routine;

Figure 3. An instruction sequence suggested by the transition diagram of Figure 1

letter digit EOS

1 3 2 error

2 error error error

3 3 3 accept

6

5.2 Deterministic Finite Automaton
 DFA (Deterministic Finite Automaton) is a quintuple

 M = (Q, , , q0, F), where

1) Q is a finite set of states

2) is a finite set of (machine) alphabet

3) is a transitive function from Q x to Q, i.e.,

 : Q x Q

4) q0 Q, is the start state

5) F Q, is the set of final (accepting) states

3

1

2

letter

digit

letter

digit

7

Transition Diagram

digit

4

1 2

3 5

6

7

digit

digit

digit

digit

digit

digit

E

E
+

-

·

Figure 5. A transition diagram representing the syntax of a real number

8

Transition Table
 digit · E + - EOS

1 2 error error error error error

2 2 3 5 error error error

3 4 error error error error error

4 4 error 5 error error error

5 7 error error 6 6 error

6 7 error error error error error

7 7 error error error error accept

Table 1. A transition table constructed from the transition

 diagram of the previous figure

accept

9

Deterministic Finite Automaton

state indicator
1

4

5

6 2

3

tape head
head moves in this direction

control mechanism

Figure 6. A representation of a deterministic finite automaton

… …
Input tape

10

Computation in DFA

Figure 5.2 Computation in a DFA

M: Q = {q 0 , q 1 } (q 0 , a) = q 1

 = {a, b} (q 0 , b) = q 0

 F = { q 1 } (q 1 , a) = q 1

 (q 1 , b) = q 0

a b a

q 0

a b a

q 1

a b a

q 0

a b a

 q 1

11

State Diagrams

 Defn 5.3.1. The state diagram of a DFA M = (Q, , , q0,

 F) is a labeled graph G defined by the following:

i. For each node N G, N Q

ii. For each arc E G, label(E)

iii. q0 is depicted

iv. For each f F, f is depicted

v. For each (qi, a) = qj, E(qi, qj) and label(E) = a

 a transition is represented by an arc

vi. For each qi Q & a , ! E(qi, qj) & label(E) = a, where qj Q

 Example: Construct the state diagram of L(M) for DFA M:

 L(M) = {w | w contains at least one 1 and an even number of 0 follow

 the first 1}

q0
q1 q2

1

0

0 1 1 0

>

12

Definitions
 Defn 5.2.2. Let m = (Q, , , q0, F) be a DFA. The

 language of m, denoted L(m), is the set of strings

 in * accepted by m.

 Defn 5.2.3 (Machine configuration). The function

 (“yields”) on Q x + is defined by

 [qi, aw] [(qi, a), w]

 where a , w *, and M. Also,

 [qi, u] [qj, v]

 denotes a sequence of 0 or more transitions.

 Defn. 5.2.4. The function (): Q x * Q of a DFA

 is called the extended transition function such that

 (qi, ua) = ((qi, u), a))

M

M

M
*

M
*

13

State Diagrams (Continued)
 Example: Give the state diagram of a DFA M such that M

 accepts all strings that start and end with a, or that start
 and end with b, i.e., M accepts strings that start and
 end with the same symbol, over the alphabet = {a, b}

 Note: Interchanging the accepting states and non-accepting
 states of a state diagram for the DFA M yields the
 DFA M’ that accepts all the strings over the same
 alphabet that are not accepted by M.

b a

b a

q0

q1

q2

q3

q4
a

b

b
b

a
a

>

14

DFA and State Diagrams
 Construct a DFA that accepts one of the following

 languages over the alphabet { 0, 1 }

i. “The set of all strings ending in 00”.

ii. “The set of all strings when interpreted as a binary integer, is

 a multiple of 5, e.g., strings 101, 1010, and 1111 are in

 the language, whereas 10, 100, and 111 are not”.

15

State Diagrams

 Theorem 5.3.3. Let M = (Q, , , q0, F) be a DFA. Then

 M’ = (Q, , , q0, Q - F) is a DFA w/ L(M’) = * - L(M)

Proof: Let w * and be the extended transition function

constructed form .

 Examples 5.3.7 and 5.3.8 (page 157)

 An incompletely specified DFA M is a machine defined by

 a partial function from Q to Q such that M halts

 as soon as it is possible to determine that an input

 string is (not) acceptable.

 M can be transformed into an equivalent DFA by adding a

 non-accepting “error” state and transitions out of all the

 states in M with other input symbols to the “error” state.

w L(M’). Conversely, if w L(M),

For each w L(M), (q0, w) F. Thus,

 then (q0, w) Q - F and

thus w L(M’).

16

5.4. Non-deterministic Finite Automata(NFA)
 Relaxes the restriction that all the outgoing arcs of a state

 must be labeled with distinct symbols as in DFAs

 The transition to be executed at a given state can be

 uncertain, i.e., > 1 possible transitions, or no

 applicable transition.

 Applicable for applications that require backtracking technique.

 Defn 5.4.1 A non-deterministic finite automaton is a

 quintuple M = (Q, , , q0, F), where

i. Q is a finite set of states

ii. is a finite set of symbols, called the alphabet

iii. q0 Q the start state

iv. F Q, the set of final (accepting) states

v. is a total function from (Q) to (Q), known as the

 transition function

17

NFA
 Every DFA is an NFA, and vice versa

 Hence, in an NFA, it is possible to have (p, a, q1) and
 (p, a, q2) , where q1 q2

 Example. Consider the following state diagram of NFA M:

 M stays in the start state until it “guesses” that it is three
 places from the end of the computation.

accept reject accept or reject

start

Deterministic

Computation

Non-deterministic

Computation

q0 q2 q1 q3
1

0,1

0,1 0,1
>

18

Advantages of NFAs over DFAs

 Sometimes DFAs have many more states, conceptually

 more complicated

 Understanding the functioning of the NFAs is much easier.

 Example 5.4.2 M1(DFA) and M2(NFA) accept (a b)* bb (a b)*

 Example 5.4.3 An NFA accepts strings over { a, b } with substring

 aa or bb.

q0 q1 q2
b

a

b
>

M1:

a, b

a
q0 q1 q2

b

a, b

b
>

M2:

a, b

q0
q4

q2 q1

q3
b b

a
a

>

a, b
a, b

a, b

19

5.5 Lambda Transitions
 A transition of any finite automata which shifts from one

 state to another without reading a symbol from the

 input tape is known as -transition

 -transition is labeled by on an arc in the state transition

 diagram

 -transition represent another form of non-DFA computations

 Provide a useful tool for designing finite automata to accept

 complex languages

 Defn. 5.5.1. An NFA with -transition, denoted NFA-, is a

 quintuple M = (Q, , , q0, F), where

 i) Q, , q0, and F are the same as in an NFA

 ii) : Q ({ }) (Q)

 Example 5.5.1 () and compared with the equivalent DFA in Ex. 5.3.3

 Example 5.5.2 (·) and Example 5.5.3 (*)

20

5.5 Lambda Transitions

M1

M2

M1
M2

M

21

5.6. Removing Non-determinism

 Given any NFA(-), there is an equivalent DFA.

 Defn 5.6.1. The -closure of a state qi, denoted -closure(qi),
 is defined recursively by

(i) Basis: qi -closure(qi)

(ii) Recursion: let qj -closure(qi) and qk (qj,)
 qk -closure(qi)

(iii) Closure: each qj -closure(qi) is obtained by a number of
 applications of (ii)

 Defn 5.6.2. The input transition function t of an NFA- M =
 (Q, , , q0, F) is a function from Q (Q) such that

 t is used to construct an equivalent DFA

(2)

)) , (() , (
) (

a q closure a q t j

q

i

i q closure j

- =

-

(1)

(3)

22

Removing Non-determinism
 Example: Consider the transition diagram in Fig. 5.3 on p. 171

 to compute t(q1 , a):

 -closure(q1) =

 t(q1, a) = -closure((q1, a))

 -closure((q4, a))

 = -closure({ q2 })

 = { q2, q3 }

 = { q2, q3, q5, q6 }

 Given M = (Q, , , q0, F), t = iff there is no -transition in

 Example 5.6.1.

 To remove the non-determinism in an NFA(-), an equivalent
 DFA simulates the exploration of all possible computations in
 the NFA (-)

 the nodes of the DFA are sets of nodes from the NFA(-)

 node Y Q in NFA(-) can be reached from node X Q in NFA(-) on ‘a’

 if q Y and p X such that (p, a) q in the DFA

q1

a

 q4

q2

q5

q3

q6

a

{ q1, q4 }

-closure({ q5 })

{ q5, q6 }

23

Removing Non-determinism
 Example 5.6.1. Transition tables are given (below) for

 the transition function . Compute the input transition

 function t of the NFA- with state diagram M. The

 language of M is a+c*b*

t a b c

q0 { q0,q1,q2 } { } { }

q1 { } { q1 } { }

q2 { } { q1 } { q1,q2 }

24

DFA Equivalent to NFA-
 Algorithm 5.6.3. Construction of DM, a DFA Equivalent to NFA-

 Input: an NFA- M = (Q, , , q0, F), input transition function t of M

 1. Initialize Q’ to { -closure(q0) }

 2. Repeat

 2.1. IF there is a node X Q’ and a symbol a with no arc

 leaving X labeled a, THEN

 2.1.1. Let Y = qi X t(qi, a)

 2.1.2. IF Y Q’, THEN set Q’ = Q’ { Y }

 2.1.3. Add an arc from X to Y labeled a

 ELSE done := true

 UNTIL done

 3. the set of accepting states of DM is

 F’ = { X Q’ | X contains qi F }

25

Removing Non-determinism

 Example. Consider the t-transition table for Example 5.6.1

 ’ a b c

 {q0} {q0, q1, q2}

 {q0, q1, q2}* {q0, q1, q2} {q1} {q1, q2}

 {q1}* {q1}

 {q1, q2}* {q1} {q1, q2}

 Theorem 5.6.4. Let w * and Qw = { qw1
, …, qwj

} be the
 set of states entered upon the completion of the
 processing of the string w in M. Processing w in DM
 terminates in state Qw. (Prove by induction on |w|.)

t a b c

q0 { q0,q1,q2 } { } { }

q1 { } { q1 } { }

q2 { } { q1 } { q1,q2 }

26

Determinism and Non-determinism

 Corollary 5.6.5. The finite automata M and DM (as

 shown in Algorithm 5.6.3) are .

 Example 5.6.2 and Example 5.6.3 show NFA DFA

 (Transformation) Relationships between the classes of

 finite automata:

 DFA NFA-

 NFA

