
Chapter 5 

Finite Automata 
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5.1  Finite State Automata 

 Capable of recognizing numerous symbol patterns, 

 the class of regular languages 

 Suitable for pattern-recognition type applications, 

 such as the lexical analyzer of a compiler 

 An abstract (computing) machine M, which is 

 implementation independent, can be used to 

 determine the acceptability (the outputs) of 

 input strings (which make up the language of M) 
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Lexical Analyzer 
 Recognizes occurrences of (valid/acceptable) strings 

 concisely 

 Use a (state) transition diagram for producing lexical 

 analysis routines, e.g., Figure 1 (next page) 

 Use a transition table whose entries provide a 

 summary of a corresponding transition diagram, 

 which consists of rows (representing states), 

 columns (representing symbols) and EOS 

 (End_of_string) 

 Entries of a transition table contain the values “accept”, 

     “error”, next states. e.g., Figure 3 

 Can be encoded in a program segment, e.g., Figure 2 
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Transition Diagram and Table  

3 

1 

2 

letter 

digit 

letter 

digit 

letter digit EOS

1 3 2 error

2 error error error

3 3 3 accept

Figure 2. A transition table constructed from the transition diagram of Figure 1 

Figure 1. A transition diagram representing the syntax   

 of a variable name 
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Instruction Sequence 

State := 1;

Read the next symbol from input;

While not end-of-string do

Case State of

1: If the current symbol is a letter then State := 3,

    else if the current symbol is a digit  then State := 2,

    else exit to error routine;

2: Exit to error routine;

3: If the current symbol is a letter then State := 3,

    else if the current symbol is a digit then State := 3,

    else exit to error routine;

Read the next symbol from the input;

End while;

If State not 3 then exit to error routine;

Figure 3. An instruction sequence suggested by the transition diagram of Figure 1 

letter digit EOS 

1 3 2 error 

2 error error error 

3 3 3 accept 
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5.2  Deterministic Finite Automaton 
 DFA (Deterministic Finite Automaton) is a quintuple 

 M = (Q, , , q0, F), where 

1) Q is a finite set of states 

2)  is a finite set of (machine) alphabet 

3)  is a transitive function from Q x  to Q, i.e., 

 : Q x   Q 

4) q0  Q, is the start state 

5) F  Q, is the set of final (accepting) states 

3 

1 
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letter 

digit 

letter 

digit 
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Transition Diagram 

digit
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Figure 5.  A transition diagram representing the syntax of a real number 
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Transition Table 
 digit · E + - EOS 

1 2 error error error error error 

2 2 3 5 error error error 

3 4 error error error error error 

4 4 error 5 error error error 

5 7 error error 6 6 error 

6 7 error error error error error 

7 7 error error error error accept 

 
Table 1. A transition table constructed from the transition 

 diagram of the previous figure 

accept 
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Deterministic Finite Automaton 

state indicator
1

4

5

6 2

3

tape head
head moves in this direction

control mechanism

Figure 6. A representation of a deterministic finite automaton 

… … 
Input tape 
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Computation in DFA 

Figure 5.2 Computation in a DFA 

M: Q = {q 0 , q 1 }    ( q 0 , a) = q 1   

    = {a, b}    ( q 0 , b) = q 0   

  F = { q 1  }    ( q 1 , a) = q 1   

     ( q 1 , b) = q 0   

      

  

a   b   a       

      

          

    

q 0     

          

a   b   a       

          
q 1         

a   b   a       

          
q 0     

          

a   b   a       

          

      q 1     
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State Diagrams 

 Defn 5.3.1. The state diagram of a DFA M = (Q, , , q0, 

 F) is a labeled graph G defined by the following:  

i. For each node N  G, N  Q 

ii. For each arc E  G, label(E)   

iii. q0 is depicted 

iv. For each f  F, f is depicted 

v. For each (qi, a) = qj,  E(qi, qj) and label(E) = a  

 a transition is represented by an arc 

vi. For each qi  Q & a  , ! E(qi, qj) & label(E) = a, where qj  Q 

 Example: Construct the state diagram of L(M) for DFA M: 

  L(M) = {w | w contains at least one 1 and an even number of 0 follow 

      the first 1}  

q0 
q1 q2 

1 

0 

0 1 1 0 

> 
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Definitions 
 Defn 5.2.2. Let m = (Q, , , q0, F) be a DFA. The 

 language of m, denoted L(m), is the set of strings

 in * accepted by m. 

 Defn 5.2.3 (Machine configuration). The function       

 (“yields”) on Q x + is defined by  

       [qi, aw]      [(qi, a), w] 

 where a  , w  *, and   M.  Also,  

       [qi, u]       [qj, v]  

 denotes a sequence of 0 or more transitions.  

 Defn. 5.2.4. The function    (     ): Q x *  Q of a DFA 

 is called the extended transition function such that 

 (qi, ua) = ((qi, u), a))  

M 

M 

M 
* 

M 
*  

 

  
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State Diagrams (Continued) 
 Example: Give the state diagram of a DFA M such that M 

 accepts all strings that start and end with a, or that start 
 and end with b, i.e., M accepts strings that start and 
 end with the same symbol, over the alphabet  = {a, b} 

 
 

 

 

 

 

 

 
 

 Note: Interchanging the accepting states and non-accepting 
     states of a state diagram for the DFA M yields the 
     DFA M’ that accepts all the strings over the same 
     alphabet that are not accepted by M. 

b a 

b a 

q0 

q1 

q2 

q3 

q4 
a 

b 

b 
b 

a 
a 

> 
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DFA and State Diagrams 
 Construct a DFA that accepts one of the following 

 languages over the alphabet { 0, 1 }  

i. “The set of all strings ending in 00”. 

ii. “The set of all strings when interpreted as a binary integer, is 

     a multiple of 5, e.g., strings 101, 1010, and 1111 are in 

     the language, whereas 10, 100, and 111 are not”. 
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State Diagrams  

 Theorem 5.3.3.  Let M = (Q, , , q0, F) be a DFA. Then 

 M’ = (Q, , , q0, Q - F) is a DFA w/ L(M’) = * - L(M) 

Proof: Let w  * and     be the extended transition function 

constructed form .  

 

 Examples 5.3.7 and 5.3.8 (page 157) 

 An incompletely specified DFA M is a machine defined by 

 a partial function from Q   to Q such that M halts 

 as soon as it is possible to determine that an input 

 string is (not) acceptable. 

 M can be transformed into an equivalent DFA by adding a 

 non-accepting “error” state and transitions out of all the 

 states in M with other input symbols to the “error” state. 













w  L(M’). Conversely, if w  L(M),  

For each w  L(M),   (q0, w)  F.  Thus, 

                                                         then   (q0, w)  Q - F and  

thus w  L(M’). 
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5.4. Non-deterministic Finite Automata(NFA) 
 Relaxes the restriction that all the outgoing arcs of a state 

 must be labeled with distinct symbols as in DFAs 

 The transition to be executed at a given state can be 

 uncertain, i.e., > 1 possible transitions, or no 

 applicable transition.  

 Applicable for applications that require backtracking technique. 

 Defn 5.4.1  A non-deterministic finite automaton is a 

 quintuple M = (Q, , , q0, F), where     

i. Q is a finite set of states 

ii.  is a finite set of symbols, called the alphabet 

iii. q0  Q the start state 

iv. F  Q, the set of final (accepting) states 

v.  is a total function from (Q  ) to (Q), known as the      

     transition function  
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NFA 
 Every DFA is an NFA, and vice versa 

 Hence, in an NFA, it is possible to have (p, a, q1)   and      
     (p, a, q2)  , where q1  q2  

 

 

 

 

 

 

 

 Example. Consider the following state diagram of NFA M: 

 
 

  

 M stays in the start state until it “guesses” that it is three     
     places from the end of the computation. 

accept reject accept or reject 

start 

Deterministic 

Computation 

Non-deterministic 

Computation 

q0 q2 q1 q3 
1 

0,1 

0,1 0,1 
> 
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Advantages of NFAs over DFAs 

 Sometimes DFAs have many more states, conceptually 

 more complicated 

 Understanding the functioning of the NFAs is much  easier. 

 Example 5.4.2  M1(DFA) and M2(NFA) accept (a  b)* bb (a  b)* 

 

 

 

 

 

 Example 5.4.3  An NFA accepts strings over { a, b } with substring    

     aa or bb. 

q0 q1 q2 
b 

a 

b 
> 

M1: 

a, b 

a 
q0 q1 q2 

b 

a, b 

b 
> 

M2: 

a, b 

q0 
q4 

q2 q1 

q3 
b b 

a 
a 

> 

a, b 
a, b 

a, b 
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5.5  Lambda Transitions 
 A transition of any finite automata which shifts from one 

 state to another without reading a symbol from the 

 input tape is known as -transition 

 -transition is labeled by  on an arc in the state  transition 

 diagram 

 -transition represent another form of non-DFA computations 

 Provide a useful tool for designing finite automata to accept 

 complex languages 

 Defn. 5.5.1. An NFA with -transition, denoted NFA-, is a 

 quintuple M = (Q, , , q0, F), where  

  i) Q, , q0, and F are the same as in an NFA 

  ii) : Q  (  {  })  (Q) 

 Example 5.5.1  () and compared with the equivalent DFA in Ex. 5.3.3 

 Example 5.5.2  (·) and Example 5.5.3  (*) 
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5.5  Lambda Transitions 

M1 

M2 

M1 
M2 

M 
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5.6. Removing Non-determinism 

 Given any NFA(-), there is an equivalent DFA. 

 Defn 5.6.1. The -closure of a state qi, denoted -closure(qi), 
 is defined recursively by 

(i)   Basis: qi  -closure(qi) 

(ii)  Recursion: let qj  -closure(qi) and qk  (qj, )       
         qk  -closure(qi) 

(iii) Closure: each qj   -closure(qi) is obtained by a number of 
     applications of (ii) 

 Defn 5.6.2. The input transition function t of an NFA- M =    
 (Q, , , q0, F) is a function from Q   (Q) such that 

   

 

 

 
 t is used to construct an equivalent DFA 

(2) 

)) , ( ( ) , ( 
) ( 

a q closure a q t j 

q 

i 

i q closure j 

- = 

-   

 
   

 

(1) 

(3) 
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Removing Non-determinism 
 Example: Consider the transition diagram in Fig. 5.3 on p. 171        

     to compute t(q1 , a):  

     -closure(q1) = 

     t(q1, a) = -closure((q1, a))   

                        -closure((q4, a)) 

                     = -closure({ q2 })  

                     = { q2, q3 }  

                     = { q2, q3, q5, q6 } 

 Given M = (Q, , , q0, F), t =  iff there is no -transition in  

 Example 5.6.1. 

 To remove the non-determinism in an NFA(-), an equivalent  
 DFA simulates the exploration of all possible computations in 
 the NFA (-) 

 the nodes of  the DFA are sets of nodes from the NFA(-) 

 node Y  Q in NFA(-) can be reached from node X  Q in NFA(-) on ‘a’ 

          if q Y and p  X such that (p, a)  q in the DFA 

q1 

a 

 q4 

q2 

q5 

q3 

q6 

 

a  

{ q1, q4 } 

-closure({ q5 }) 

{ q5, q6 } 



23 

Removing Non-determinism 
 Example 5.6.1. Transition tables are given (below) for 

 the transition function . Compute the input transition 

 function t of the NFA- with state diagram M. The 

 language of M is a+c*b* 

t a b c 

q0 { q0,q1,q2 } { } { } 

q1 { } { q1 } { } 

q2 { } { q1 } { q1,q2 } 
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DFA Equivalent to NFA- 
 Algorithm 5.6.3.  Construction of DM, a DFA Equivalent to NFA- 

 Input: an NFA- M = (Q, , , q0, F), input transition function t of M 

       1.  Initialize Q’ to { -closure(q0) } 

   2.  Repeat 

  2.1.  IF there is a node X  Q’ and a symbol a   with no arc 

                        leaving X labeled a, THEN 

               2.1.1.  Let Y = qi  X  t(qi, a) 

                 2.1.2.  IF Y  Q’, THEN set Q’ = Q’  { Y } 

               2.1.3.  Add an arc from X to Y labeled a 

          ELSE  done := true 

           UNTIL done 

       3.  the set of accepting states of DM is  

   F’ = { X  Q’ | X contains qi  F }  
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Removing Non-determinism 

 Example. Consider the t-transition table for Example 5.6.1 

 

 

 

                      
         ’                          a                     b                  c 

                   {q0}                  {q0, q1, q2}                                

        {q0, q1, q2}*                 {q0, q1, q2}            {q1}           {q1, q2} 

                   {q1}*                                           {q1}                 

              {q1, q2}*                                           {q1}           {q1, q2} 

                                                                                         

 Theorem 5.6.4. Let w  * and Qw = { qw1
, …, qwj 

} be the 
 set of states entered upon the completion of the 
 processing of the string w in M.  Processing w in DM 
 terminates in state Qw. (Prove by induction on |w|.) 

t a b c 

q0 { q0,q1,q2 } { } { } 

q1 { } { q1 } { } 

q2 { } { q1 } { q1,q2 } 
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Determinism and Non-determinism 

 Corollary 5.6.5. The finite automata M and DM (as 

 shown in Algorithm 5.6.3) are . 

 Example 5.6.2 and Example 5.6.3 show NFA  DFA 

 (Transformation) Relationships between the classes of 

 finite automata: 

                          DFA                  NFA- 

                                                        

                                                NFA 


