Chapter 5

Finite Automata

5.1 Finite State Automata

Capable of recognizing numerous symbol patterns, the class of <u>regular</u> <u>languages</u>

 Suitable for <u>pattern</u>-recognition type applications, such as the *lexical analyzer* of a compiler

 An abstract (computing) machine *M*, which is *implementation independent*, can be used to determine the acceptability (the outputs) of input strings (which make up the language of *M*)

Lexical Analyzer

Recognizes occurrences of (valid/acceptable) strings concisely

- Use a (<u>state</u>) <u>transition</u> <u>diagram</u> for producing lexical analysis routines, e.g., Figure 1 (next page) ►
- Use a <u>transition table</u> whose entries provide a summary of a corresponding transition diagram, which consists of rows (representing *states*), columns (representing symbols) and EOS (End_of_string)
 - Entries of a transition table contain the values "accept", "error", next states. e.g., Figure 3
- Can be encoded in a program segment, e.g., Figure 2

Transition Diagram and Table

Figure 1. A transition diagram representing the syntax of a *variable name*

	letter	digit	EOS
1	3	2	error
2	error	error	error
3	3	3	accept

Figure 2. A transition table constructed from the transition diagram of Figure 1

Instruction Sequence

State := 1;

Read the next symbol from input;

- While not end-of-string do
 - Case State of
 - 1: If the current symbol is a letter then State := 3, else if the current symbol is a digit then State := 2, else exit to error routine;
 - 2: Exit to error routine;
 - 3: If the current symbol is a letter then State := 3, else if the current symbol is a digit then State := 3, else exit to error routine;
 - Read the next symbol from the input;

End while;

If State not 3 then exit to error routine;

letter	digit	EOS
3	2	error
error	error	error
3	3	accept
	3	3 2

5.2 Deterministic Finite Automaton

- <u>DFA</u> (<u>Deterministic</u> <u>Finite</u> <u>Automaton</u>) is a quintuple $M = (Q, \Sigma, \delta, q_0, F)$, where
 - 1) Q is a finite set of states
 - 2) Σ is a finite set of (machine) alphabet
 - 3) δ is a transitive function from $Q \ge \Sigma$ to Q, i.e., $\delta: Q \ge \Sigma \rightarrow Q$
 - 4) $q_0 \in Q$, is the start state
 - 5) $F \subseteq Q$, is the set of final (accepting) states

Transition Diagram

Figure 5. A transition diagram representing the syntax of a *real number*

Transition Table

	digit	•	E	+	-	EOS
1	2	error	error	error	error	error
2	2	3	5	error	error	error
3	4	error	error	error	error	error
4	4	error	5	error	error	accept
5	7	error	error	6	6	error
6	7	error	error	error	error	error
7	7	error	error	error	error	accept

Table 1. A transition table constructed from the transitiondiagram of the previous figure

Deterministic Finite Automaton

Figure 6. A representation of a deterministic finite automaton

Computation in DFA

$$M: Q = \{q_0, q_1\} \quad \begin{array}{l} \delta(q_0, a) = q_1 \\ \Sigma = \{a, b\} \quad \delta(q_0, b) = q_0 \\ F = \{q_1\} \quad \delta(q_1, a) = q_1 \\ \delta(q_1, b) = q_0 \end{array}$$

Figure 5.2 Computation in a DFA

State Diagrams

- Defn 5.3.1. The state diagram of a DFA $M = (Q, \Sigma, \delta, q_0, F)$ is a labeled graph *G* defined by the following:
 - i. For each node $N \in G$, $N \in Q$
 - ii. For each arc $E \in G$, label(E) $\in \Sigma$
 - *iii.* q_0 is depicted >
 - iv. For each $f \in F$, f is depicted (
 - v. For each $\delta(q_i, a) = q_j$, $\exists E(q_i, q_j)$ and label(E) = a

> a transition is represented by an arc

- vi. For each $q_i \in Q$ & $a \in \Sigma$, $\exists ! E(q_i, q_j)$ & label(E) = a, where $q_j \in Q$
- Example: Construct the state diagram of L(M) for DFA M:

 $L(M) = \{w \mid w \text{ contains } \underline{at \text{ least}} \text{ one 1 and an } \underline{even} \text{ number of 0 follow the first 1} \}$

Definitions

- Defn 5.2.2. Let $m = (Q, \Sigma, \delta, q_0, F)$ be a DFA. The language of m, denoted L(m), is the set of strings in Σ^* accepted by m.
- Defn 5.2.3 (Machine configuration). The function I_M ("yields") on $Q \ge \Sigma^+$ is defined by

 $[q_{i}, aw] \vdash_{M} [\delta(q_{i}, a), w]$ where $a \in \Sigma$, $w \in \Sigma^{*}$, and $\delta \in M$. Also, $[q_{i}, u] \vdash_{M}^{*} [q_{j}, v]$

denotes a sequence of 0 or more transitions.

■ <u>Defn. 5.2.4.</u> The function $\hat{\delta}(|_{M}^{*})$: $Q \ge \Sigma^{*} \to Q$ of a DFA is called the <u>extended transition function</u> such that $\hat{\delta}(q_{i}, ua) = \delta(\hat{\delta}(q_{i}, u), a))$

State Diagrams (Continued)

Example: Give the state diagram of a DFA *M* such that *M* accepts all strings that start and end with *a*, or that start and end with *b*, i.e., *M* accepts strings that start and end with the same symbol, over the alphabet $\Sigma = \{a, b\}$

 Note: Interchanging the accepting states and non-accepting states of a state diagram for the DFA *M* yields the DFA *M* that accepts *all* the strings over the same alphabet that are <u>not</u> accepted by *M*.

DFA and State Diagrams

- Construct a DFA that accepts one of the following languages over the alphabet { 0, 1 }
 - i. "The set of all strings ending in 00".
 - ii. **"The** set of all strings when interpreted as a binary integer, is a multiple of 5, e.g., strings 101, 1010, and 1111 are in the language, whereas 10, 100, and 111 are not".

State Diagrams

<u>Theorem 5.3.3.</u> Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Then $M = (Q, \Sigma, \delta, q_0, Q - F)$ is a DFA w/ $L(M) = \Sigma^* - L(M)$

Proof: Let *w* ∈ ∑* and $\hat{\delta}$ be the extended transition function constructed form δ. For each *w* ∈ *L*(*M*), $\hat{\delta}(q_0, w) \in F$. Thus, *w* ∉ *L*(*M*'). Conversely, if *w* ∉ *L*(*M*), then $\hat{\delta}(q_0, w) \in Q - F$ and thus *w* ∈ *L*(*M*).

- Examples 5.3.7 and 5.3.8 (page 157)
- An incompletely specified DFA M is a machine defined by a partial function from Q × ∑ to Q such that M halts as soon as it is possible to determine that an input string is (not) acceptable.
 - M can be transformed into an equivalent DFA by adding a non-accepting "error" state and transitions out of all the states in M with other input symbols to the "error" state.

5.4. Non-deterministic Finite Automata(NFA)

- Relaxes the restriction that all the outgoing arcs of a state must be labeled with *distinct symbols* as in DFAs
- The transition to be executed at a *given state* can be uncertain, i.e., > 1 possible transitions, or no applicable transition.
- Applicable for applications that require *backtracking* technique. ►
- Defn 5.4.1 A non-deterministic finite automaton is a quintuple $M = (Q, \Sigma, \delta, q_0, F)$, where
 - *i.* **Q** is a finite set of *states*
 - ii. \sum is a finite set of symbols, called the *alphabet*
 - *iii.* $q_0 \in Q$ the start state
 - *iv.* $F \subseteq Q$, the set of *final (accepting)* states
 - v. δ is a total function from $(Q \times \Sigma)$ to $\wp(Q)$, known as the *transition* function

NFA

Every DFA is an NFA, and vice versa

0.1

 q_0

▶ Hence, in an NFA, it is possible to have $(p, a, q_1) \in \delta$ and $(p, a, q_2) \in \delta$, where $q_1 \neq q_2$

Example. Consider the following state diagram of NFA M:

M stays in the start state until it "guesses" that it is three places from the end of the computation.

 q_1

0,1

0,1

 q_2

 q_3

Advantages of NFAs over DFAs

- Sometimes DFAs have many more states, conceptually more complicated
- Understanding the functioning of the NFAs is much easier.
 - > Example 5.4.2 M_1 (DFA) and M_2 (NFA) accept $(a \cup b)^*$ bb $(a \cup b)^*$

Example 5.4.3 An NFA accepts strings over { a, b } with substring aa or bb.

5.5 Lambda Transitions

- A transition of any finite automata which shifts from one state to another without reading a symbol from the input tape is known as λ -transition
- λ -transition is labeled by λ on an *arc* in the state transition diagram
- λ -transition represent another form of *non-DFA computations*
- Provide a useful tool for designing finite automata to accept complex languages
- <u>Defn. 5.5.1.</u> An NFA with λ -transition, denoted *NFA-\lambda*, is a quintuple $M = (Q, \Sigma, \delta, q_0, F)$, where

i) Q, \sum, q_0 , and F are the same as in an NFA

ii) δ : $Q \times (\Sigma \cup \{\lambda\}) \rightarrow \wp(Q)$

- ▶ Example 5.5.1 (\cup) and compared with the equivalent DFA in Ex. 5.3.3 ▶
- ► Example 5.5.2 (•) and Example 5.5.3 (*) ►

5.5 Lambda Transitions

that accept $(a \cup b)^*bb(a \cup b)^*$ and $(b \cup ab)^*(a \cup \lambda)$, respectively. Composite machines are built by appropriately combining the state diagrams of M₁ and M₂,

Example 5.5.2

An NFA- λ that accepts L(M₁)L(M₂), the <u>concatenation</u> of the languages of M₁ and M₂, is constructed by joining the two machines with a lambda arc.

Example 5.5.3

Lambda transitions are used to construct an NFA- λ that accepts all strings of even length over $\{a, b\}$. First we build the state diagram for a machine that accepts strings of length two. $\left((a \cup b)(a \cup b)\right)^*$ M

Example 5.5.1 The language of the NFA- λ M is L(M₁) \cup L(M₂).

5.6. Removing Non-determinism

- Given any NFA($-\lambda$), there is an equivalent DFA.
- <u>Defn 5.6.1</u>. The λ-closure of a state q_i, denoted λ-closure(q_i), is defined recursively by
 - (i) Basis: $q_i \in \lambda$ -closure (q_i)
 - (ii) Recursion: let $q_j \in \lambda$ -closure (q_j) and $q_k \in \delta(q_j, \lambda)$ $\Rightarrow q_k \in \lambda$ -closure (q_j)

(iii) Closure: each $q_j \in \lambda$ -closure (q_i) is obtained by a number of applications of (ii)

• Defn 5.6.2. The input transition function *t* of an NFA- $\lambda M = (Q, \Sigma, \delta, q_0, F)$ is a function from $Q \times \Sigma \rightarrow \wp(Q)$ such that

$$t(q_i, a) = \bigcup_{\substack{q_j \in \lambda \text{-closure}(q_i)}} \lambda - closure(\delta(q_j, a))$$

t is used to construct an equivalent DFA

Removing Non-determinism

• Example: Consider the transition diagram in Fig. 5.3 on p. 171 to compute $t(q_1, a)$: λ -closure $(q_1) = \{ q_1, q_4 \}$ $t(q_1, a) = \lambda$ -closure $(\delta(q_1, a)) \cup$ λ -closure $(\delta(q_4, a))$ $= \lambda$ -closure $(\{ q_2 \}) \cup \lambda$ -closure $(\{ q_5 \})$ $= \{ q_2, q_3 \} \cup \{ q_5, q_6 \}$ $= \{ q_2, q_3, q_5, q_6 \}$

- Given $M = (Q, \Sigma, \delta, q_0, F)$, $t = \delta$ iff there is <u>no</u> λ -transition in $\delta \triangleright$
- Example 5.6.1.
- To remove the non-determinism in an NFA(-λ), an equivalent DFA simulates the exploration of all possible computations in the NFA (-λ)
 - > the nodes of the DFA are sets of nodes from the NFA(- λ)
 - > node Y ⊆ Q in NFA(-λ) can be reached from node X ⊆ Q in NFA(-λ) on 'a' if ∃q ∈ Y and ∃p ∈ X such that $\delta(p, a) \ni q$ in the DFA
 22

Removing Non-determinism

Example 5.6.1. Transition tables are given (below) for the transition function δ . Compute the input transition function t of the NFA- λ with state diagram M. The language of M is $a^+c^*b^*$

λ
ø
Ø
$\{q_1\}$

t	а	b	С
q_0	$\{ q_0, q_1, q_2 \}$	{ }	{ }
q_{1}	{ }	$\{ q_1 \}$	{ }
q ₂	{ }	$\set{q_1}$	$\{ q_1, q_2 \}$

DFA Equivalent to NFA- $\!\lambda$

- <u>Algorithm 5.6.3</u>. Construction of DM, a DFA Equivalent to NFA- λ Input: an NFA- λ $M = (Q, \Sigma, \delta, q_0, F)$, input transition function *t* of *M*
 - 1. Initialize Q' to { λ -closure(q_0) }
 - 2. Repeat

2.1. IF there is a node $X \in Q$ and a symbol $a \in \Sigma$ with no arc leaving X labeled a, THEN

2.1.1. Let $Y = \bigcup_{q_i \in X} t(q_i, a)$

2.1.2. IF $Y \notin Q'$, THEN set $Q' = Q' \cup \{Y\}$

2.1.3. Add an arc from X to Y labeled a

ELSE done := true

UNTIL done

3. the set of accepting states of DM is

 $F = \{ X \in Q' \mid X \text{ contains } q_i \in F \}$

Removing Non-determinism

Example. Consider the *t*-transition table for Example 5.6.1

	t	а	b	С		
	q_0	$\{ q_0, q_1, q_2 \}$	{ }	{ }		
	q_{1}	{ }	$\{ q_1 \}$	{ }		
	q_2	{ }	$\{ q_1 \}$	$\{ q_1, q_2 \}$		
δ΄		а		b	С	
$\{q_0\}$		$\{q_0, q_1, q_2\}$		φ	φ	
$\{q_0, q_1, q_2\}^*$		$\{q_0, q_1, q_2\}$		{ <i>q</i> ₁ }	$\{q_1, q_2\}$	
$\{q_1\}^*$		φ		$\{q_1\}$	φ	
$\{q_1, q_2\}^*$		φ		{ <i>q</i> ₁ }	$\{q_1, q_2\}$	
φ			φ	φ	φ	

Theorem 5.6.4. Let w ∈ ∑* and Q_w = { q_{w1}, ..., q_{wj}} be the set of states entered upon the completion of the processing of the string w in M. Processing w in DM terminates in state Q_w. (Prove by induction on |w|.)

Determinism and Non-determinism

- Corollary 5.6.5. The finite automata M and DM (as shown in Algorithm 5.6.3) are ≡.
- Example 5.6.2 and Example 5.6.3 show NFA \Rightarrow DFA
- (Transformation) Relationships between the classes of finite automata:

$$\begin{array}{cccc}
\mathsf{DFA} & \Leftarrow & \mathsf{NFA-}\lambda \\
& \subseteq & & \subseteq \\
& & \mathsf{NFA}
\end{array}$$