Chapter 2

- Defn. A language is a set of <u>strings</u> over an <u>alphabet</u>.
 - A more restricted definition requires some forms of restrictions on the strings, i.e., strings that satisfy certain properties
- Defn. The <u>syntax</u> of a language restricts the set of strings that satisfy certain *properties*.

- Defn. A <u>string</u> over an alphabet X, denoted Σ, is a <u>finite sequence</u> of elements from X, which are <u>indivisible objects</u>
 - e.g., Strings can be words in English
 - The set of strings over an alphabet is defined recursively (as given below)

- Defn. 2.1.1. Let Σ be an alphabet. Σ^* , the set of strings over Σ , is defined *recursively* as follows:
 - (i) Basis: $\lambda \in \Sigma^*$, the null string
 - (ii) Recursion: $w \in \Sigma^*$, $a \in \Sigma \Rightarrow wa \in \Sigma^*$
 - (iii) Closure: $w \in \Sigma^*$ is obtained by step (i) and a finite # of step (ii)
 - The length of a string w is denoted length(w)
- Q: If Σ contains n elements, how many possible strings over Σ are of length k ($\in \Sigma$ *)?

- Example: Given $\Sigma = \{a, b\}$, Σ^* includes λ , a, b, aa, ab, ba, bb, aaa, ...
- Defn 2.1.2. A language over an alphabet Σ is a subset of Σ^* .
- Defn 2.1.3. Concatenation, is the fundamental binary operation in the generation of strings, which is associative, but not commutative, is defined as
 - Basis: If length(v) = 0, then $v = \lambda$ and uv = u
 - Recursion: Let v be a string with length(v) = n (> 0). Then v = wa, for string w with length n-1 and $a \in \Sigma$, and uv = (uw)a

- **Example**: Let $\alpha = ab$, $\beta = cd$, and $\gamma = e$
 - $> \alpha(\beta \gamma) = (\alpha \beta) \gamma, \text{ but }$
 - $\Rightarrow \alpha\beta \neq \beta\alpha$, unless $\alpha = \lambda$, $\beta = \lambda$, or $\alpha = \beta$.
- Exponents are used to abbreviate the *concatenation* of a string with itself, denoted u^n ($n \ge 0$)
- Defn 2.1.5. Reversal, which is a unary operation, rewrites a string backward, is defined as
 - i) Basis: If length(u) = 0, then $u = \lambda$ and $\lambda^R = \lambda$.
 - ii) Recursion: If length(u) = n (> 0), then u = wa for some string w with length n 1 and some $a \in \Sigma$, and $u^R = aw^R$
- Theorem 2.1.6. let $u, v \in \Sigma^*$. Then, $(uv)^R = v^R u^R$.

- Finite language specification
 - Example 2.2.1. The language L of string over {a, b} in which each string begins with an 'a' and has even length.
 - i) Basis: aa, $ab \in L$.
 - ii) Recursion: If $u \in L$, then uaa, uab, uba, ubb $\in L$.
 - iii) Closure: $u \in L$ only if u is obtained from the basis elements by a finite number of applications of the recursive step.
- Use set operations to construct complex sets of strings.
 - Defn 2.2.1. The concatenation of languages X and Y, denoted XY, is the language

$$XY = \{ uv \mid u \in X \text{ and } v \in Y \}$$

Given a set X, X* denotes the set of strings that can be defined with ● and ○

Defn 2.2.2. let X be a set. Then

$$X^* = \bigcup_{i=0}^{\infty} X^i$$
 and $X^+ = \bigcup_{i=1}^{\infty} X^i$

>
$$X^+ = XX^*$$
 or $X^+ = X^* - \{ \lambda \}$

Observation: Formal (i) recursive definitions, (ii) concatenation, and (iii) set operations precisely define languages, which require the unambiguous specification of the strings that belong to the language.

Regular Sets and Expressions

- Defn 2.3.1 Let Σ be an alphabet. The <u>regular sets</u> over Σ are defined recursively as follows:
 - (i) Basis: \emptyset , { λ }, and { a }, $\forall_{a \in \Sigma}$, are regular sets over Σ .
 - (ii) Recursion: Let X and Y be regular sets over Σ . The sets $X \cup Y$, XY and X* are regular sets over Σ .
 - (iii) Closure: Any regular set over Σ is obtained from (i) and by a finite number of applications of (ii).
- Example: Describe the content of each of the following regular sets:
 - (i) { $aa \}^*$, (ii) { $a \}^* \cup \{ b \}^*$, (iii) ({ $a \} \cup \{ b \}$)*, (iv) { $a \} (\{ b \} \{ c \})^*$
 - Regular expressions are used to abbreviate the descriptions of regular sets, e.g., replacing { b } by b, union (∪) by (,), etc.

Examples.

(a) The set of strings over { a, b } that contains the substrings aa or bb

$$L = \{\{a\} \cup \{b\}\}^* \{a\} \{\{a\} \cup \{b\}\}^* \cup \{\{a\} \cup \{b\}\}^* \{b\} \{\{a\} \cup \{b\}\}^*\}$$

(b) The set of string over { a, b } that do not contain the substrings aa and bb

$$L = (a, b)^* - ((a, b)^*aa(a, b)^* \cup (a, b)^*bb(a, b)^*)$$
 [non-regular set]

(c) The set of strings over {a, b} that contain exactly two b's

$$L = \{a\}^*\{b\}\{a\}^*\{b\}\{a\}^*$$

Regular Sets and Expressions

- Defn 2.3.2. let Σ be an alphabet. The <u>regular expressions</u> over Σ are defined recursively as follows:
 - (i) Basis: \emptyset , λ , and a, $\forall a \in \Sigma$, are regular expressions over Σ .
 - (ii) Recursion: Let u and v be regular expressions over Σ . Then (u, v), (uv) and $(u)^*$ are regular expressions over Σ .
 - (iii) Closure: Any regular expression over Σ is obtained form (i) and by a finite number of applications of (ii).
 - It is assumed that the following <u>precedence</u> is assigned to the operators to reduce the number of parentheses:

Regular Sets and Expressions

- Example: Give a regular expression for each of the following over the alphabet { 0, 1 }:
 - { w | w begins with a '1' and ends with a '0' }
 - { w | w contains at least three 1's}
 - { w | w is any string without the substring '11' }
 - \ \{ w | w \text{ is a string that begin with a '1' and contain exactly two 0's \}
 - { w | w contains an even number of 0's, or contains exactly two 1's and nothing else }
- Regular expression definition of a language is not unique.

Regular Expression Identities

TABLE 2.1 Regular Expression Identities 1. $\phi U = U \phi = \phi$ 2. $\lambda u = u\lambda = u$ 3. $\phi^* = \lambda$ 4. $\lambda^* = \lambda$ 5. $u \cup v = v \cup u$ $U \cup \phi = U$ 7. $u \cup u = u$ 8. $U^* = (U^*)^*$ 9. $u (v \cup w) = uv \cup uw$ 10. $(u \cup v) w = uw \cup vw$ 11. $(uv)^*u = u(vu)^*$ 12. $(u \cup v)^* = (u^* \cup v)^*$ $= u^* (u \cup v)^* = (u \cup vu^*)^*$ $= (U^*V^*)^* = U^* (VU^*)^*$ $= (U^*V)^* U^*$

Regular Expressions

- There exist non-regular expressions such as
 - \Rightarrow { $a^nb^n \mid n \ge 0$ }
 - $> \{(0, 1)^*(01)^n(0, 1)^*(10)^n(0, 1)^*1 \mid n \ge 0\}$
- Table 2.1 Regular Expression Identities
 - $\phi^* = \lambda$; The * operation puts together any number of strings from the language to get a (new) string in the result. If the language is empty, the * operation can put together 0 strings, giving only the null string (λ).
 - $\Rightarrow \phi u = u \phi = \phi$; Concatenating ϕ to any set yields ϕ .
- $(a, \lambda)(b, \lambda) = {\lambda, a, b, ab}$. How about $c^*(b, ac^*)^*$?
 - The regular expression c*(b, ac*)* yields all strings that do not contain the substring bc.

Grammars Languages and Accepting Machines

Grammars	Languages	Accepting Machines
Type 0 grammars,	Recursively	TM
Phrase-structure grammars,	enumerable	NDTM
Unrestricted grammars	Unrestricted	
Type 1 grammars,	Contest-sensitive	e Linear-bounded
Context-sensitive grammars,	languages	Automata
Monotonic grammars		
Type 2 grammars,	Context-free	PDA
Context-free grammars	languages	
Type 3 grammars,	Regular	FSA
Regular grammars,	languages	NDFA
Left-linear grammars,		
Right-linear grammars		15