Chapter 15

P, NP, and Cook’s Theorem
Establishes whether decision problems are (only) theoretically decidable, i.e., decides whether each solvable problem has a practical solution that can be solved efficiently

A theoretically solvable problem may not have a practical solution, i.e., there is no efficient algorithm to solve the problem in polynomial time – an intractable problem

- Solving intractable problems require extraordinary amount of time and memory.
- Efficiently solvable problems are polynomial (P) problems.
- Intractable problems are non-polynomial (NP) problems.

Can any problem that is solvable in polynomial time by a non-deterministic algorithm also be solved deterministically in polynomial time, i.e., $P = NP$?
15.1 Time Complexity of NTMs

- A deterministic TM searches for a solution to a problem by sequentially examining a number of possibilities, e.g., to determine a perfect square number.

- A NTM employs a “guess-and-check” strategy on any one of the possibilities.

- **Defn. 15.1.1** The time complexity of a NTM M is the function $tc_M: \mathbb{N} \rightarrow \mathbb{N}$ such that $tc_M(n)$ is the maximum number of transitions in any computation for an input of length n.

- Time complexity measures the *efficiency* over all computations

 - the *non-deterministic* analysis must consider **all** possible computations for an input string.

 - the guess-and-check strategy is generally *simpler* than its deterministic counterparts.
15.1 Time Complexity of NTMs

- Example 15.1.1 Consider the following two-tape NTM M that accepts the palindromes over \{a, b\}.

- The time complexity of M is

$$tc_M(n) = \begin{cases}
 n + 2 & \text{if } n \text{ is odd} \\
 n + 3 & \text{if } n \text{ is even}
\end{cases}$$

- The strategy employed in the transformation of a NTM to an equivalent DTM (given in Section 8.7) does not preserve polynomial time solvability.
15.1 Time Complexity of NTMs

Theorem 15.1.2 Let L be the language accepted by a one-tape NTM M with time complexity $tc_M(n) = f(n)$. Then L is accepted by a DTM M' with time complexity $tc_{M'}(n) \in O(f(n)c^{f(n)})$, where c is the maximum number of transitions for any <state, symbol> pair of M.

Proof. Let M be a one-tape NTM that halts for all inputs, and let c be the maximum number of distinct transitions for any <state, symbol> pair of M. The transformation from non-determinism to determinism is obtained by associating a unique computation of M with a sequence (m_1, \ldots, m_n), where $1 \leq m_i \leq c$. The value m_i indicates which of the c possible transitions of M should be executed on the i^{th} step of the computation.

A three-tape DTM M' was described in Section 8.7 (pages 275-277) whose computation with input w iteratively simulated all possible computations of M with input w.
Theorem 15.1.2 (Continued)

<table>
<thead>
<tr>
<th>t</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DTM

[Graph diagram with states and transitions labeled with symbols a, b, c]
15.1 Time Complexity of NTMs

Theorem 15.1.2 (Cont.) Given a NTM M with $tc_M(n) = f(n)$, show a DTM M' with time complexity $tc_{M'}(n) \in O(f(n)c^{f(n)})$, where $c = \max. \text{no. of transitions for any } <\text{state, symbol}> \text{ pair of } M$.

Proof. (Cont.) We analyze the number of transitions required by M' to simulate all computations of M.

For an input of length n, the max. no. of transitions in M is at most $f(n)$. To simulate a single computation of M, M' behaves as follows:

1) generates a sequence (m_1, \ldots, m_n) of transitions, $1 \leq m_i \leq c$
2) simulates the computation of M using (m_1, \ldots, m_n), and
3) if the computation does not accept the input string, the computation of M' continues with Step 1.

In the worst case, $c^{f(n)}$ sequences are examined for each single computation of M.

As the simulation of a computation of M can be performed using $O(f(n))$ transitions of M', $tc_{M'}(n) \in O(f(n)c^{f(n)})$ in simulating M by M'.
15.2 The Classes P and NP

- **Defn. 15.2.1** A language L is decidable in *polynomial time* if there is a standard TM M that accepts L with $tc_M \in O(n^r)$. The family of languages decidable in polynomial time is denoted P.

- Any problem that is polynomially solvable on a standard TM is in P, and the choice of DTM models (e.g., multi-tape, multi-track) for the analysis is invariant.

- **Defn. 15.2.2** A language L is accepted in *nondeterministic polynomial time* if there is a NTM M that accepts L with $tc_M \in O(n^r)$. The family of languages accepted in nondeterministic polynomial time is denoted NP.

- Since every DTM is a NTM, $P \subseteq NP$.

- The family NP is a subset of the *recursive languages*, since the number of transitions ensure all computations terminates.
15.3 Problem Representation and Complexity

- Design a TM M to solve a decision problem R consists of 2 steps:
 1. Represent the instances of R as strings
 2. Construct M that analyzes the strings and solves R
 - which requires the discovery of an algorithm to solve R

- The time complexity (tc) of a TM relates the length of the input to the number of transitions in the computations, and thus the selection of the representation have direct impacts on the computations.

- Example. Given the following TMs M_1 (encodes n as 1^{n+1}) and M_2 (encodes n by the standard binary representation):

 ![Diagram of TM M_1]

 ![Diagram of TM M_2]

 - where M_1 and M_2 both solve the problem of deciding whether a natural number is even, with the inputs to M_1 using the unary representation and M_2 the binary representation.
15.3 Problem Representation and Complexity

Example. (Cont.)

- The \(t_{c_M} \) differs, and the difference in representation does not affect the complexity; however, the modification (shown below) has a significant impact on the complexity.

- Consider TM \(M_3 \), which includes a TM \(T \) that transforms an input in *binary* to its *unary* in solving the same problem:

\[
M_3: \text{Binary representation } \rightarrow \boxed{T} \rightarrow \text{Unary representation } \rightarrow \boxed{M_1} \rightarrow \begin{cases} \text{Yes} & \text{if } t_{c_M} = 1 \\ \text{No} & \text{if } t_{c_M} = 1 \end{cases}
\]

- The *complexity* of the new solution, i.e., \(M_3 \), is analyzed in the following table, which shows the *increase* in string length caused by the conversion:

<table>
<thead>
<tr>
<th>String Length</th>
<th>Maximum Binary Number</th>
<th>Decimal Value</th>
<th>Unary Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11 = 1^2</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>3</td>
<td>1111 = 1^4</td>
</tr>
<tr>
<td>3</td>
<td>111</td>
<td>7</td>
<td>11111111 = 1^8</td>
</tr>
<tr>
<td>(i)</td>
<td>(1^i)</td>
<td>(2^i - 1)</td>
<td>(12^i)</td>
</tr>
</tbody>
</table>
Example. (Cont.)

- tc_{M_3} is determined by the complexity of T and M_1.
- For the input of length i, the string 1^i requires the maximum number of transitions of M_3, i.e.,

\[
 tc_{M_3}(n) = tc_T(n) + tc_{M_1}(2^n) = tc_T(n) + 2^n + 1
\]

which is exponential even without adding tc_T. The increase in the complexity is caused by the increase in the length of the input string using the unary representation.
15.4 Decision Problems & Complexity Classes

Decision problems from \(P \) and \(NP \)

Acceptance of Palindromes
Input: String \(u \) over alphabet \(\Sigma \)
Output: \(yes \) – \(u \) is a palindrome
\(no \) – otherwise
Complexity – in \(P \) (\(O(n^2) \), p. 444)

Path Problem for Directed Graphs
Input: Graph \(G = (N, A) \), \(v_i, v_j \in N \)
Output: \(yes \) – if \(\exists \) path(\(v_i, v_j \)) in \(G \)
\(no \) – otherwise
Complexity – in \(P \) (Dijkstra’s alg: \(O(n^2) \))

Derivability in CNF Grammar
Input: CNF grammar \(G \), string \(w \)
Output: \(yes \) – if \(S \Rightarrow^* w \)
\(no \) – otherwise
Complexity – in \(P \) (CYK Alg: \(O(n^3) \), p. 124)

Hamiltonian Circuit Problem
Input: Directed graph \(G = (N, A) \)
Output: \(yes \) – if \(\exists \) cycle with each vertex in \(G \)
\(no \) – otherwise
Complexity – in \(P \) (unknown)

Subset Sum Problem
Input: Set \(S \), \(v: S \rightarrow N \), \(k \)
Output: \(yes \) – if \(\exists S' (\subseteq S) \) whose total value is \(k \)
\(no \) – otherwise
Complexity – in \(P \) (unknown)
\(\) – in \(NP \) (Yes)

- Each of the \(NP \) problems can be solved non-deterministically using a “guess-and-check” strategy
15.6 Polynomial-Time Reduction

- **Reduction** is a problem-solving technique employed to
 - avoid “reinventing the wheel” when encountering a new problem
 - transform the instances of the new problem into those of a problem that has been solved
 - establish the *decidability* and *tractability* of problems

- **Defn. 11.3.1** Let L be a language over alphabet Σ_1 and Q be a language over Σ_2. L is many-to-one reducible to Q if there exists a *Turing computable function* $r : \Sigma_1^* \rightarrow \Sigma_2^*$ such that $w \in L$ if, and only if, $r(w) \in Q$.
 - if a language L is reducible to a *decidable* language Q by a function r, then L is also *decidable*.

Example (p. 348). Let R be the TM that computes the *reduction*, i.e., input(L) to input(Q), and M the TM that accepts language Q. The sequential execution of R and M on strings from Σ_1^* accepts language L (by accepting inputs to Q) is

- R, the reduction TM, which does *not* determine membership in either L or Q, transforms strings from Σ_1^* to Σ_2^*.
- Strings in Q are determined by M, and strings in L are by the combination of R and M.
A reduction of a language L to a language Q transforms the question of membership in L to that of membership in Q.

Let r be a reduction (function) of L to Q computed by a TM R. If Q is accepted by a TM M, then L is accepted by a TM that

i) runs R on input string $w \in \Sigma_1^*$, and

ii) runs M on $r(w)$.

The string $r(w)$ is accepted by M if, and only if, $w \in L$

The time complexity includes

i) time required to transform the instances of L, and

ii) time required by the solution to Q.

Defn. 15.6.1 Let L and Q be languages over alphabets Σ_1 and Σ_2, respectively. L is reducible in polynomial time to Q if there is a polynomial-time computable function $r : \Sigma_1 \rightarrow \Sigma_2$ such that $w \in L$ if, and only if, $r(w) \in Q$.

15.6 Polynomial-Time Reduction
15.6 Polynomial-Time Reduction

- **Example 15.6.1** (p. 349, 478) Reduces $L = \{ x^i y^i z^k \mid i \geq 0, k \geq 0 \}$ to $Q = \{ a^i b^i \mid i \geq 0 \}$ by transforming $w \in \{x, y, z\}^*$ to $r(w) \in \{a, b\}^*$.
 - If $w \in x^* y^* z^*$, replace each ‘x’ by ‘a’ and ‘y’ by ‘b’, and erase the z’s
 - otherwise, replace w by a single ‘a’

The following TM transforms multiple strings in L to the same string in Q (i.e., a many-to-one reduction):

<table>
<thead>
<tr>
<th>Reduction</th>
<th>Input</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>$w \in {x, y, z}^*$</td>
<td>$w \in L$</td>
</tr>
<tr>
<td>\downarrow</td>
<td>$\downarrow r$</td>
<td>if and only if $r(w) \in Q$</td>
</tr>
<tr>
<td>Q</td>
<td>$r(w) \in {a, b}^*$</td>
<td>$r(w) \in Q$</td>
</tr>
</tbody>
</table>
15.6 Polynomial-Time Reduction

- **Theorem 15.6.2** Let L be reducible to Q in *polynomial time* and let $Q \in P$. Then $L \in P$.

- **Proof.** Let R denote the TM that computes the reduction of L to Q and M the TM that decides Q. L is accepted by a TM that sequentially run R and M. The time complexities tc_R and tc_M combine to produce an *upper bound* on the no. of transitions of a computation of the composite TM. The computation of R with input string w generates the string $r(w)$, which is the input to M. The function tc_R can be used to establish a bound on the length of $r(w)$. If the input string w to R has length n, then the length of $r(w)$ cannot exceed the $\max(n, tc_R(n))$.

A computation of M processes at most $tc_M(k)$ transitions, where k is the length of its input string. The number of transitions of the composite TM (i.e., R and M) is bounded by the sum of the estimates of R and M. If $tc_R \in O(n^s)$ and $tc_M \in O(n^t)$, then

$$tc_R(n) + tc_M(tc_R(n)) \in O(n^{st})$$
15.6 Polynomial-Time Reduction

Example 15.6.1 (Continued) Reduces $L = \{x^iy^iz^k | i \geq 0, k \geq 0 \}$ to $Q = \{a^ib^i | i \geq 0 \}$:

- For string n of length ≥ 0, $tc_R(0) = 2$, $tc_R(1) = 4$, $tc_R(2) = 8$, etc.
- The worst case occurs for the remainder of the strings when an ‘x’ or ‘y’ follows a ‘z’, i.e., when w is read in q_1, q_2, and q_3, and erased in q_4. The computation is completed by setting $r(w) = a$, and for $n > 1$, $tc_R(n) = 2n + 4$

- Combining R and M

- The combined TM accepts Q with $tc_M(n) = 2n^2 + 3n + 2$.
- Worst-case(tc_M): input $a^{n/2}b^{n/2}$, if n is even, or $a^{(n-1)/2}b^{(n-1)/2}$, if n is odd
- Thus, $tc_R(n) + tc_M(tc_R(n)) = (2n + 4) + (2(2n+4)^2 + 3(2n + 4) + 2) \in O(n^2)$. The upper bound in Theorem 15.6.2, i.e., $tc_R(n) + tc_M(tc_R(n)) \in O(n^{st})$.

Diagram: A transition diagram showing states and transitions for the transition functions R and M. The diagram illustrates the flow of computation and the transitions between states based on the input symbols x, y, and z. The states are labeled q_0, q_1, q_2, q_3, and q_4, and the transitions are marked with symbols indicating the input and the action performed (e.g., x/x, y/y, B/B, L/L). The transitions show how the machine moves from one state to another based on the input string and the resulting state transitions.
15.6 Polynomial-Time Reduction

Example. A TM M that accepts $Q = \{ a^n b^n \mid n \geq 0 \}$ and its tc:

![Diagram of TM states and transitions]

<table>
<thead>
<tr>
<th>n</th>
<th>$tc_M(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>46</td>
</tr>
</tbody>
</table>

$t_{c_M}(n) = 2n^2 + 3n + 2 \in O(n^2)$

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Move</th>
<th>Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td>$2n+1$</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
<td>$2n-1$</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>$2n$</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>$2n-2$</td>
</tr>
</tbody>
</table>

$q_0, q_1, q_2, q_3, q_4, q_f$

$n = 0$
$q_0, q_1, q_2, q_3, q_4, q_f$

$n = 1$

$n = 2$
15.7 \(P = NP? \)

- A language accepted in \textit{polynomial time} by DTM with multi-track or -tape is in \(P \).

- The process for constructing an equivalent DTM from a NTM does \textit{not} preserve polynomial-time complexity. (See Theorem 15.1.2: \(tc_M(n) = f(n) \Rightarrow tc_M'(n) \in O(f(n)c^{f(n)}) \).)

- Due to the additional time complexity of currently known non-deterministic solutions over deterministic solutions across a wide range of important problems, it is generally believe that \(P \neq NP \).

- The \(P = (\neq) NP \) problem is a precisely formulated mathematical problem and will be resolved only when either (i) the \textit{equality} of the two classes, or (ii) \(P \subseteq NP \) is proved.

- Defn. 15.7.1 A language \(Q \) is called \textit{NP-hard} if for every \(L \in NP \), \(L \) is reducible to \(Q \) in polynomial time. An \textit{NP-hard} language that is also in \(NP \) is called \textit{NP-complete}.
15.7 $P = NP$?

- Some problems L are so hard that although we can prove they are NP-hard, we cannot prove they are NP-complete, i.e., $L \in NP$.

- $P = NP$, if there exists a polynomial-time TM, which accepts an NP-complete language, can be used to construct TMs to accept every language in NP in deterministic polynomial time.

- **Theorem 15.7.2** If there is an NP-hard language that is also in P, then $P = NP$.

 - **Proof.** Assume that Q is an NP-hard language that is accepted in polynomial time by a DTM, i.e., $Q \in P$. Let $L \in NP$. Since (by Defn. 15.7.1) Q is NP-hard, there is a polynomial time reduction of L to Q. By Theorem 15.6.2 (which states that if L is reducible to Q in polynomial time and $Q \in P$, then $L \in P$), $L \in P$.
The class consisting of all \textit{NP-complete} problems, which is non-empty, is denoted NPC.

- If $P \neq \text{NP}$, then P and NPC are nonempty, disjoint subsets of \text{NP}, which is the scenario believed to be true by most mathematicians and computer scientists.

- If $P = \text{NP}$, then the two sets collapse to a single class.
15.8 The Satisfiability Problem

- The Satisfiability Problem
 - An NP-complete problem
 - Determines whether there is an assignment of truth values to propositions that makes a formula true
 - The truth value of a formula is obtained from those of the elementary propositions occurring in the formula

- Fundamentals of Propositional Logic
 - A Boolean variable, which takes on the values 0 & 1, is considered to be a proposition
 - The value of a variable specifies the truth/falsity of the proposition
 - The logical connectives \(\land \) (and), \(\lor \) (or), and \(\neg \) (not) are used to construct propositions, i.e., well-formed formulas (wff), from a set of Boolean variables
15.8 The Satisfiability Problem

- Propositional Logic
 - A clause is a well-formed formula that consists of a disjunction of variables or the negation of variables in which an unnegated (negated) variable is called a positive (negative) literal.
 - A formula is in conjunctive normal form (CNF) if it has the form $u_1 \land u_2 \land u_n$, where each $u_i (1 \leq i \leq n)$ is a clause, e.g.,
 $$(x \lor \neg y \lor \neg z) \land (x \lor z) \land (\neg x \lor \neg y)$$

- The Satisfiability Problem is the problem of deciding if a CNF is satisfied by some truth assignment, e.g., the above CNF is satisfied by $x = 1$, $y = 0$, and $z = 0$

- A deterministic solution to the Satisfiability Problem can be obtained by checking every truth assignment, in which the number of possible truth assignments is 2^n, where n is the number of Boolean variables.
Theorem 15.8.2 The Satisfiability Problem is in \(NP \)

Proof. A representation of the wff over a set of Boolean variables \(\{x_1, x_2, ..., x_n\} \) such that (i) a variable is encoded by the binary representation of its subscript, and (ii) a literal \(L \) is the encoding of its variable followed by \#1 if \(L \) is positive, and 0, otherwise. For example,

\[
(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3)
\]

is encoded as \(1#1 \lor 10#0 \land 1#0 \lor 11#1 \)

An input to TM M consists of the encoding of the variables in the wff followed by ## & the encoding of the wff, e.g.,

\[
1 \# 10 \# 11 ## 1#1 \lor 10#0 \land 1#0 \lor 11#1
\]

The language \(L_{SAT} \) consists of all string over \(\sum = \{0, 1, \land, \lor, \#\} \) that represent satisfiable CNF formula.

A two-tape NTM M that solves the Satisfiability Problem non-deterministically generates a truth assignment. The initial setup contains the representation of the wff on tape 1 w/ tape 2 blank.
15.8 The Satisfiability Problem

e.g., Tape 2 \(BB \)
Tape 1 \(B1\#10\#11##1\#1 \lor 10\#0 \land 1\#0 \lor 11\#1 B \)

1. If the input does not have the anticipated form, the computation halts and rejects the string.

2. The encoding of \(x_1 \) on tape 1 is copied onto tape 2, which is followed by printing # and non-deterministically writing 0 or 1, encoded as \(t(x_1) \), i.e., the truth assignment of \(x_1 \).

If this is not the last variable, ## is written and the step is repeated for the next variable. For example,

Tape 2 \(B1\#t(x_1)##10\#t(x_2)##11\#t(x_3) B \)
Tape 1 \(B1\#10\#11##1\#1 \lor 10\#0 \land 1\#0 \lor 11\#1 B \)

The tape head on tape 2 is repositioned at the leftmost position. The head on tape 1 is moved past ## into a position to read the 1\(^{st}\) variable of the wff.
15.8 The Satisfiability Problem

3. Assume that the encoding of the variable x_i is scanned on tape 1. The encoding of x_i is found on tape 2. M compares the value $t(x_i)$ on tape 2 with the Boolean value following x_i on tape 1.

4. If the values do not match, the current literal is not satisfied by the truth assignment.

 If the symbol following the literal is a B or \land, every literal in the current clause has been examined & failed. When this occurs; the truth assignment does not satisfy the wff & the computation halts in a non-accepting state.

 If \lor is read instead, the tape heads are positioned to examine the next literal in the clause (step 3).

5. If the values do match, the literal & current clause are satisfied by the truth assignment. The head on tape 1 moves to the right to the next \land or B.

 If a B is found, the computation halts & accepts the input. Otherwise, the next clause is processed by returning to step 3.
The matching procedure in step 3 determines the rate of growth of the time complexity of M.

In the worst case, the matching requires comparing each variable on tape 1 with each of the variables on tape 2 to discover the match. This can be accomplished in $O(k \times n^2)$ time, where

- n is the number of variables, and
- k is the number of literals in the input
Theorem 15.8.3 The Satisfiability Problem is NP-hard.

Proof. Let L be a language accepted by a NTM M whose computations are bounded by a polynomial p. The reduction of L to the Satisfiability Problem is achieved by transforming the computations of M with an input string u into a CNF formula $f(u)$ so that $u \in L(M)$ iff $f(u)$ is satisfiable. The construction of $f(u)$ is then shown to require time that grows only polynomially with $|u|$.

It is assumed that all computations of M halt in one of 2 states, the accepting state q_A and rejecting state q_R. It is assumed that there are no transitions leaving these states.

An arbitrary TM can be transformed into M satisfying these restrictions by adding transitions from every accepting configuration to q_A and from every rejecting configuration to q_R. The transformation from a computation to a wff assumes that all computations with input of length n contain $p(n)$ configurations.
Proof (Continued). The (final) states and alphabets of M are denoted

\[Q = \{ q_0, q_1, \ldots, q_m \} \]
\[\Gamma = \{ B, a_0, a_1, \ldots, a_s, a_{s+1}, \ldots, a_t \} \]
\[\sum = \{ a_{s+1}, a_{s+2}, \ldots, a_t \} \]
\[F = \{ q_m \}, \text{ and } q_{m-1} \text{ is the lone rejecting state} \]

Let \(u \in \sum^* \) be a string of length \(n \). A wff \(f(u) \) is defined that encodes the computations of M with input \(u \). The length of \(f(u) \) depends on \(p(n) \), the max. no. of computation of M with input of \(|n| \).

The encoding is designed so that there is a truth assignment satisfying \(f(u) \) iff \(u \in L(M) \). The wff is built from three classes of variables which represent a property of a machine configuration.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Interpretation (when satisfied)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{i,k})</td>
<td>(0 \leq i \leq m, 0 \leq k \leq p(n)) M is in state (q_i) at time (transition) (k)</td>
</tr>
<tr>
<td>(P_{j,k})</td>
<td>(0 \leq j \leq p(n), 0 \leq k \leq p(n)) M scans position (j) at time (k)</td>
</tr>
<tr>
<td>(S_{j,r,k})</td>
<td>(0 \leq j \leq p(n), 0 \leq r \leq t, 0 \leq k \leq p(n)) Tape position (j) contains symbol (a_r) at time (k)</td>
</tr>
</tbody>
</table>
15.8 The Satisfiability Problem

- **Proof (Continued).** The set of variables V in a wff is the *union* of the three sets defined above. A computation of M defines a truth assignment on V. For example, if tape position 3 initially contains symbol a_i, then $S_{3,i,0}$ is *true* and $S_{3,j,0}$ must be *false*, $\forall i \neq j$.

A truth assignment obtained in this manner specifies (i) the *state*, (ii) *position* of the tape head, and (iii) the *symbols* on the tape for each time k ($0 \leq k \leq p(n)$). This is the information contained in the sequence of configurations produced by the computation.

An arbitrary assignment of truth values to the variables in V need not correspond to a computation of M. Assigning 1 to both $P_{0,0}$ & $P_{1,0}$ indicates that the tape head is at 2 distinct positions at time 0.

The wff $f(u)$ should impose restrictions on the variables to ensure that the interpretations of the variables are identical with those generated by the *truth assignment* obtained from a computation. Eight sets of wff are defined from u & the transitions of M. Seven of the eight families of wff are given directly in clause form.
Proof (Continued). The notation

\[\bigwedge_{i=1}^{k} v_i \quad \bigvee_{i=1}^{k} v_i \]

represents the conjunction and disjunction of the literals \(v_1, \ldots, v_k \), respectively.

A truth assignment that satisfies the set of clauses defined in (i) in the following table indicates that the TM is in a unique state at each time. Satisfying the first disjunction guarantees that at least one of the variables \(Q_{i,k} \) holds. The pairwise negations specify that no two states are satisfied at the same time. This is most easily seen using the tautological equivalence of the disjunction \(\neg A \lor B \) to the implication \(A \Rightarrow B \) to transform the clauses \(\neg Q_{i,k} \lor \neg Q_{i',k} \) into implications \(Q_{i,k} \Rightarrow \neg Q_{i',k} \) which can be interpreted as asserting that if the TM is in state \(q_i \) at time \(k \), then it is not also in \(q_{i'} \), for any \(i' \neq i \).
Proof (Continued).

<table>
<thead>
<tr>
<th>Clause</th>
<th>Conditions</th>
<th>Interpretation (when satisfied)</th>
</tr>
</thead>
</table>
| i) State \[
\begin{align*}
 \bigvee_{i=0}^{m} Q_{i,k} \\
 \neg Q_{i,k} \lor \neg Q_{i',k} \\
\end{align*}
\] | \(0 \leq k \leq p(n)\) \(0 \leq i < i' \leq m\) \(0 \leq k \leq p(n)\) | For each time \(k\), \(M\) is in at least one state. M is in at most one state (not two different states at the same time). |
| ii) Tape head position \[
\begin{align*}
 \bigvee_{j=0}^{p(n)} P_{j,k} \\
 \neg P_{j,k} \lor \neg P_{j',k} \\
\end{align*}
\] | \(0 \leq k \leq p(n)\) \(0 \leq j < j' \leq p(n)\) \(0 \leq k \leq p(n)\) | For each time \(k\), the tape head is in at least one position. At most one position. |
| iii) Symbols on tape \[
\begin{align*}
 \bigvee_{r=0}^{r} S_{j,r,k} \\
 \neg S_{j,r,k} \lor \neg S_{j,r',k} \\
\end{align*}
\] | \(0 \leq j \leq p(n)\) \(0 \leq k \leq p(n)\) \(0 \leq j \leq p(n)\) \(0 \leq r < r' \leq t\) \(0 \leq k \leq p(n)\) | For each time \(k\) and position \(j\), position \(j\) contains at least one symbol. At most one symbol. |
| iv) Initial conditions for input string \(u = a_1 a_2 \ldots a_m\) \[
\begin{align*}
 Q_{0,0} \\
 P_{0,0} \\
 S_{0,0,0} \\
 S_{1,r_1,0} \\
 S_{2,r_2,0} \\
 \vdots \\
 S_{n,r_n,0} \\
 S_{n+1,0,0} \\
 \vdots \\
 S_{p(n),0,0} \\
\end{align*}
\] | | The computation begins reading the leftmost blank. The string \(u\) is in the input position at time 0. The remainder of the tape is blank at time 0. |
| v) Accepting condition \[
\begin{align*}
 Q_{m,p(n)} \\
\end{align*}
\] | | The halting state of the computations is \(q_m\). |
Proof (Continued). Since the computation of M with input of length n cannot access the tape beyond position $p(n)$, a TM configuration is completely defined by the state, position of the tape head, and the contents of the initial $p(n)$ positions of the tape.

A truth assignment that satisfies the clauses in (i), (ii), and (iii) defines a TM configuration for each time between 0 and $p(n)$. The conjunction of the clauses (i) and (ii) indicates that the TM is in a unique state scanning a single tape position at each time. The clauses in (iii) ensure that the tape contains precisely one symbol in each position.

A computation consists of a sequence of related configurations. Clauses whose satisfaction specifies the configuration at time 0 and links consecutive configurations are added. Initially, (i) the TM is in state q_0, (ii) the tape head scanning the leftmost position, (iii) the input on tape positions 1 to n, and the remaining tape squares blank. The satisfaction of the $p(n) + 2$ clauses in (iv) ensures the correct machine configuration at time 0.
15.8 The Satisfiability Problem

- Proof (Continued). Each subsequent configuration must be obtained from its successor by the application of a transition. Assume that the TM is in state q_i, scanning symbol a in position j at time k. The final three sets of wff are introduced to generate the permissible configurations at time $k + 1$ based on the transitions of M and the variables that define the configuration at time k.

The effect of a transition on the tape is to rewrite the position scanned by the tape head. With the possible exception of position $P_{j,k}$, every tape position at time $k + 1$ contains the same symbol as at time k. Clauses must be added to the wff to ensure that the remainder of the tape is unaffected by a transition.

<table>
<thead>
<tr>
<th>Clause</th>
<th>Conditions</th>
<th>Interpretation (when satisfied)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(vi) Tape consistency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-S_{j,r,k} \lor P_{j,k} \lor S_{j,r,k+1}$</td>
<td>$0 \leq j \leq p(n)$, $0 \leq r \leq t$, $0 \leq k \leq p(n)$</td>
<td>Symbols not at the position of the tape head are unchanged</td>
</tr>
</tbody>
</table>
Proof (Continued). (vi) is not satisfied if a change occurs to a tape position other than the one scanned by the tape head, since

\[\neg S_{j,r,k} \lor P_{j,k} \lor S_{j,r,k+1} \iff \neg P_{j,k} \Rightarrow (S_{j,r,k} \Rightarrow S_{j,r,k+1}) \]

Now assume that for a given time \(k \), the TM is in state \(q_i \) scanning symbol \(a \), in position \(j \). These features of a configuration are designated by the assignment of 1 to the Boolean variables \(Q_{i,k} \), \(P_{j,k} \), and \(S_{j,r,k} \). The clause

a) \(\neg Q_{i,k} \lor \neg P_{j,k} \lor \neg S_{j,r,k} \lor Q_{i,k+1} \) is satisfied only when \(Q_{i,k+1} \) is true, which signifies that \(M \) has entered state \(q_i \), at time \(k+1 \). The symbol in position \(j \) at time \(k+1 \) and the tape head position are specified by the clauses

b) \(\neg Q_{i,k} \lor \neg P_{j,k} \lor \neg S_{j,r,k} \lor S_{j,r,k+1} \), and

c) \(\neg Q_{i,k} \lor \neg P_{j,k} \lor \neg S_{j,r,k} \lor P_{j+n(\ell),k+1} \), where \(n(L) = -1 \) and \(n(R) = 1 \)

(a), (b) & (c) are satisfied by the transition \([q_j, a_r, d] \in \delta(q_i, a_i) \).
15.8 The Satisfiability Problem

Proof (Continued). Except for \(q_m \) & \(q_{m-1} \), the restrictions on M ensure that at least one transition is defined for each \(<\text{state}, \text{symbol}>\).

The CNF formulas

\[
\begin{align*}
&\neg Q_{i,k} \lor \neg P_{j,k} \lor \neg S_{j,r,k} \lor Q_{i,k+1} \quad \text{New state} \\
&\neg Q_{i,k} \lor \neg P_{j,k} \lor \neg S_{j,r,k} \lor P_{j+n(d),k+1} \quad \text{New tape head position} \\
&\neg Q_{i,k} \lor \neg P_{j,k} \lor \neg S_{j,r,k} \lor S_{j,r,k+1} \quad \text{New symbol at position } r
\end{align*}
\]

is constructed for every

\[
\begin{align*}
0 &\leq k \leq p(n) \quad \text{time} \\
0 &\leq i \leq m-1 \quad \text{non-halting state} \\
0 &\leq j \leq p(n) \quad \text{tape head position} \\
0 &\leq r \leq t \quad \text{tape symbol}
\end{align*}
\]

where \([q_i, a_r, d] \in \delta(q_i, a_r)\), except when the position is 0 & the direction \(L \) is specified by the transition. For the exception when a transition causes the tape head to cross the leftmost cell of the tape, a special cause is encoded by the following wff:
15.8 The Satisfiability Problem

Proof (Continued).

\[
(\neg Q_{i,k} \lor \neg P_{0,k} \lor \neg S_{0,r,k} \lor Q_{m-1,k+1})
\]
\[
(\neg Q_{i,k} \lor \neg P_{0,k} \lor \neg S_{0,r,k} \lor P_{0,k+1})
\]
\[
(\neg Q_{i,k} \lor \neg P_{0,k} \lor \neg S_{0,r,k} \lor S_{0,r,k+1})
\]

for all transitions \([q_i, a_r, L] \in \delta(q_i, a_r)\).

Since M is nondeterministic, there may be several transitions that can be applied to a given configuration. The result of applying any of these alternatives is a permissible succeeding configuration in a computation.

Let \(trans(i, j, r, k)\) denote disjunction of the CNF formulas that represent the alternative transitions for a configuration at time \(k\) in state \(q_i\), tape head position \(j\), and tape symbol \(r\). \(Trans(i, j, r, k)\) is satisfied only if the values of the variables at time \(k+1\) represent a legitimate successor to the variables with time \(k\).
Proof (Continued).

The formulas \(\text{trans}(i, j, r, k)\) do not specify the actions to be taken when the TM is in state \(q_m\) or \(q_{m-1}\). In this case, the subsequent configuration is identical to its predecessor.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Interpretation (when satisfied)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vii) Generation of successor configuration (\text{trans}(i, j, r, k))</td>
<td>Configuration (k+1) follows from configuration (k) by the application of a transition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clause</th>
<th>Interpretation (when satisfied)</th>
</tr>
</thead>
<tbody>
<tr>
<td>viii) Halted computation</td>
<td></td>
</tr>
<tr>
<td>((\neg Q_{i,k} \lor \neg P_{j,k} \lor \neg S_{j,r,k} \lor Q_{i,k+1})) (\lor \ldots \lor \neg S_{j,r,k} \lor P_{j,k+1})</td>
<td>Same state</td>
</tr>
<tr>
<td>((\neg Q_{i,k} \lor \neg P_{j,k} \lor \neg S_{j,r,k} \lor S_{j,r,k+1}))</td>
<td>Same tape head position</td>
</tr>
<tr>
<td>((\neg Q_{i,k} \lor \neg P_{j,k} \lor \neg S_{j,r,k} \lor S_{j,r,k+1})</td>
<td>Same symbol at position (r)</td>
</tr>
</tbody>
</table>

These clauses are built \(\forall j, r, k\) in the legal range & \(i = q_m, q_{m-1}\)
Proof (Continued). Let $f'(u)$ be the conjunction of the wff constructed in (i) through (viii). When $f'(u)$ is satisfied by a truth assignment on V, the variables define the configurations of a computation of M that accepts the input string u. The clauses in (iv) specify that the configuration at time 0 is the initial configuration of a computation of M with input u. Each subsequent configuration is obtained from its successor by the result of the application of a transition. u is accepted by M since the satisfaction of (v) indicates that the final configuration contains the state q_m.

A CNF formula $f(u)$ can be obtained from $f'(u)$ by converting each formula $\text{trans}(i, j, r, k)$ into CNF using the technique presented in Lemma 15.8.4 that follows. Lastly, we show that the transformation of a string $u \in \Sigma^*$ to $f(u)$ can be done in polynomial time.

The transformation of u to $f(u)$ consists of the construction of the clauses & the conversion of trans to CNF. The no. of clauses is a function of
Proof (Continued).

i) the number of states m and the number of tape symbols t,

ii) the length n of the input string u, and

iii) the bound $p(n)$ on the length of the computation of M

m and t obtained from M are independent of the input string. From the range of the subscripts, we see that the number of clauses is polynomial in $p(n)$. The development of $f(u)$ is completed with the transformation into CNF which, by Lemma 15.8.4, is polynomial in the number of clauses in the formulas $\text{trans}(i, j, r, k)$.

We have shown that the CNF formula can be constructed in a number of steps that grows polynomially with the length u. What is really needed is the representation of the formula that serves as input to a TM that solves the Satisfiability Problem. Any reasonable encoding, including the one developed in Theorem 15.8.2, requires only polynomial time to convert the high-level representation to the machine representation. \qed