
## Team Assignment 10: Chapter 15. P, NP, and Cook's Theorem Due Tuesday, April 12

Names: \_\_\_\_\_\_ Section: \_ Score: \_\_\_/50 pts

1. (Problem 15.1 on Page 493) Let M be the Turing machine



- (b) [10 pts] Describe the computation of M with input  $a^n$  that requires the maximum number of transitions.
- (c) [3 pts] Give the function  $tc_M$ .
- 2. The (following) machine R computes a function from  $\{a, b\}^*$  to  $\{c, d\}^*$  (Problem 15.12 on Page 495):



- (b) [10 pts] What string of length n will cause R to use the greatest number of transitions? Explain Why.
- (c) [3 pts] Give the function  $tc_R$ .
- (d) [8 pts] Does the machine R reduce the language  $L = abb(a \cup b)^*$  to the language  $Q = (c \cup d)^*cdd^*$ ? If yes, prove that the function computed by R is a reduction. If no, give a string that demonstrates that the mapping is not a reduction.
- 3. [16 pts] Assume that P = NP. Let L be the language in NP with  $L \neq \emptyset$  and  $\bar{L} \neq \emptyset$ . Prove that L is NP-complete (Problem 15.17(a) on Page 495).