Chapter 14

Time Complexity
Time Complexity

- The study of *complexity of a problem* is the study of the *complexity of the algorithm* that solves the problem.

- The computational complexity of an algorithm is measured by the amount of *resources* required to carry it out, i.e., *time* and *space*.

- The *time complexity* of a computation C is determined by the amount of time required to perform C, whereas the *space complexity* of C is determined by the amount of *storage space* required by C.
14.2 Rates of Growth

- The rate of growth of a function, which measures the increase of the function values as the input gets arbitrarily large, is determined by the most significant contributor to the growth of the function.

- Table 14.2 (Growth of functions)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>$20n + 500$</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>1,000</td>
<td>1,500</td>
<td>2,500</td>
<td>20,500</td>
</tr>
<tr>
<td>n^2</td>
<td>0</td>
<td>25</td>
<td>100</td>
<td>625</td>
<td>2,500</td>
<td>10,000</td>
<td>1,000,000</td>
</tr>
<tr>
<td>$n^2 + 2n + 5$</td>
<td>5</td>
<td>40</td>
<td>125</td>
<td>680</td>
<td>2,605</td>
<td>10,205</td>
<td>1,002,005</td>
</tr>
<tr>
<td>$n^2 / (n^2 + 2n + 5)$</td>
<td>0</td>
<td>0.625</td>
<td>0.800</td>
<td>0.919</td>
<td>0.960</td>
<td>0.980</td>
<td>0.998</td>
</tr>
</tbody>
</table>

- the linear and constant terms of $n^2 + 2n + 5$ are called the lower-order terms, which do not significantly contribute to the growth of the function values.
Defn 14.2.1 Let \(f : \mathbb{N} \rightarrow \mathbb{N} \) and \(g : \mathbb{N} \rightarrow \mathbb{N} \) be one-variable number-theoretic functions.

i. \(f \) is said to be of order \(g \), written \(f \in O(g) \), if there is a positive constant \(c \) and natural number \(n_0 \) such that

\[
f(n) \leq c \times g(n), \quad \forall n \geq n_0
\]

ii. \(O(g) = \{ f \mid f \text{ is of order } g \} \), i.e., the set of all functions of order \(g \), is called the “big oh of \(g \)”

\(f \) is of order \(g \), written \(f \in O(g) \), if the growth of \(f \) is bounded by a constant multiple of the values of \(g \)
14.2 Rates of Growth

- The rate of growth is determined by the most significant contributor to the growth of the function.

- If \(f \in O(g) \) and \(g \in O(f) \), then given two positive constants \(C_1 \) and \(C_2 \),

\[
\begin{align*}
 f(n) &\leq C_1 \times g(n), \quad \forall n \geq n_1; \\
g(n) &\leq C_2 \times f(n), \quad \forall n \geq n_2
\end{align*}
\]

- \(f \) and \(g \) have the same rate of growth, i.e., neither \(f \) nor \(g \) grow faster than the other.
14.2 Rates of Growth

- A function f is said to **exponentially** (polynomially, respectively) bounded if $f \in O(2^n)$ ($f \in O(n^r)$, respectively).

- **Example 14.2.2** Let $f(n) = n^2 + 2n + 5$ and $g(n) = n^2$. Then

 $g \in O(f)$, since $n^2 \leq n^2 + 2n + 5$, $\forall n \in \mathbb{N}$, $n_0 = 0$, and $C = 1$.

 $f \in O(g)$, since $2n \leq 2n^2$ and $5 \leq 5n^2$, $\forall n \geq 1$.

 Then $f(n) = n^2 + 2n + 5 \leq n^2 + 2n^2 + 5n^2 = 8n^2 = 8 \times g(n)$, $\forall n \geq 1$.

 Thus $f \in O(n^2)$

- **Example 14.2.1** Let $f(n) = n^2$ and $g(n) = n^3$. $f \in O(g)$, but $g \notin O(f)$.

 Clearly, $n^2 \in O(n^3)$, since $n^2 \leq n^3$, for $\forall n \in \mathbb{N}$, $n_0 = 0$, and $C = 1$.

 Suppose that $n^3 \in O(n^2)$. Then there exists constants C and n_0 such that

 $n^3 \leq C \times n^2$, $\forall n \geq n_0$.

 Let $n_1 = \max(n_0 + 1, C + 1)$. Then

 $n_1^3 = n_1 \times n_1^2 > C \times n_1^2$, since $n_1 > C$,

 contradicting the inequality that $n_1^3 \leq C \times n_1^2$. Thus $n^3 \notin O(n^2)$.
14.2 Rates of Growth

- Using *limits* to determine the asymptotic complexity of two functions

- Let \(f \) & \(g \) be two number-theoretic functions

 - If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \), then \(f \in O(g) \), but \(g \notin O(f) \)

 - If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \) with \(0 < c < \infty \), then \(f \in \Theta(g) \), and \(g \in \Theta(f) \)

 where \(\Theta(g) = \{ f \mid f \in O(g) \text{ and } g \in O(f) \} \)

 - If \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \), then \(f \notin O(g) \) and \(g \in O(f) \)

- **Example.** Let \(f(n) = n^2 \) and \(g(n) = n^3 \). \(f \in O(g) \), but \(g \notin O(f) \).

 Since \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{1}{n} = 0 \), \(f \in O(g) \), but \(g \notin O(f) \).
14.2 Rates of Growth

<table>
<thead>
<tr>
<th>Big Oh (Big O)</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>constant</td>
</tr>
<tr>
<td>$O(\log_a(n))$</td>
<td>logarithmic</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>linear</td>
</tr>
<tr>
<td>$O(n \log_a(n))$</td>
<td>$n \log n$</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>quadratic</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>cubic</td>
</tr>
<tr>
<td>$O(n^r)$</td>
<td>polynomial $r \geq 0$</td>
</tr>
<tr>
<td>$O(b^n)$</td>
<td>exponential $b > 1$</td>
</tr>
<tr>
<td>$O(n!)$</td>
<td>factorial</td>
</tr>
</tbody>
</table>
14.2 Rates of Growth

TABLE 14.4 Number of Transitions of Machine with Time Complexity t_{C_M} with Input of Length n

<table>
<thead>
<tr>
<th>n</th>
<th>$\log_2(n)$</th>
<th>n</th>
<th>n^2</th>
<th>n^3</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>5</td>
<td>25</td>
<td>125</td>
<td>32</td>
<td>120</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>10</td>
<td>100</td>
<td>1,000</td>
<td>1,024</td>
<td>3,628,800</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>20</td>
<td>400</td>
<td>8,000</td>
<td>1048576</td>
<td>2.4×10^{18}</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>30</td>
<td>900</td>
<td>27,000</td>
<td>1.0×10^{9}</td>
<td>2.6×10^{32}</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>40</td>
<td>1,600</td>
<td>64,000</td>
<td>1.1×10^{12}</td>
<td>8.1×10^{47}</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>50</td>
<td>2,500</td>
<td>125,000</td>
<td>1.1×10^{15}</td>
<td>3.0×10^{64}</td>
</tr>
<tr>
<td>100</td>
<td>6</td>
<td>100</td>
<td>10,000</td>
<td>1,000,000</td>
<td>1.2×10^{30}</td>
<td>> 10^{157}</td>
</tr>
<tr>
<td>200</td>
<td>7</td>
<td>200</td>
<td>40,000</td>
<td>8,000,000</td>
<td>1.6×10^{60}</td>
<td>> 10^{374}</td>
</tr>
</tbody>
</table>
14.3 Time Complexity

Computational Complexity of TMs

- Given a TM \(M \), \(M \) accepts the language \(L \) in \textit{polynomial-time} if \(L = L(M) \) and there exists \(P(n) \), a polynomial expression, such that \(M \) accepts any \(w \in L(M) \) in \(\leq P(|w|) \) steps.

- A problem is \textbf{tractable} if there is a DTM that solves the problem whose computations are \textit{polynomially bounded}.

- A language \(L \) is \textbf{decidable} in \textit{polynomial time} if there exists a TM \(M \) that accepts \(L \) with \(tc_M \in O(n^r) \), where \(r \in N \) is independent of \(n \).

- The family of languages decidable in polynomial time is denoted \(P \), e.g.,

 Q: Is the language of palindromes over \{a, b\} \textit{decidable} in \textit{polynomial time}?

 A: yes, there exists TM \(A \) that accepts the language in \(O(n^2) \) time as shown on P.444 (a TM that accepts palindromes), where \(tc_M(n) = (n^2 + 3n + 2) / 2 \in O(n^2) \).

- A language \(L \) is said to be accepted in \textit{non-deterministic polynomial time} if there is a NDTM \(M \) that accepts \(L \) with \(tc_M \in O(n^r) \), \(r \in N \) and \(r \) is independent of \(n \). This family of language is denoted \(NP \).
14.3 Time Complexity of a TM

Example: Let the transition diagram of the TM M that accepts the language of palindromes over \{a, b\} be

(* When evaluating the time complexity of a TM, we assume that the computations terminates for every input since it makes no sense to discuss the efficiency of a computation that continue indefinitely *)

Consider Table 14.5. Hence, $tc_M(0) = 1$; $tc_M(1) = 3$; $tc_M(2) = 6$; $tc_M(3) = 10$
Example. Consider the actions of M when processing an even-length (palindrome) input string. The computation alternates between sequences of right (RM) and left (LM) movements.

- RM: requires $k+1$ transitions, where k is the length of the non-blank portion of the tape
- LM: this requires k transitions
- A pair of RM and LM reduces the length of nonblank portion of the tape by 2.
- It requires $n/2$ iterations of the RM-LM for accepting a (palindrome) string of $|n|$

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Direction</th>
<th>Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td>$n+1$</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>n</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
<td>$n-1$</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>$n-2$</td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td>$n-3$</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>$n-4$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$(n/2) + 1$</td>
<td>R</td>
<td>1</td>
</tr>
</tbody>
</table>

The time complexity of M is (same as odd-length): $\sum_{i=1}^{n+1} i = (n+2)(n+1)/2 \in O(n^2)$
14.3 Time Complexity of a TM

- Time complexity of a TM is determined by the maximum number of steps (i.e., transitions) executed during the computation, whereas the space complexity of a TM computation is defined to be number of tape cells required by the computation.

- If the time complexity of a TM computation is n, then the space complexity of that computation is $\leq n + 1$.

 - The space complexity of a TM computation may be less than the number of cells to hold the processing string as the TM may not have to process the entire string in order to accept it.

- We measure the time complexity of a TM M by the worst-case performance of M (occurred when M accepts the input string) with input string of length n, denoted $tc_M(n)$.
14.3 Analysis of the complexity of TMs

- **Example 14.3.1.** Given a two-tape TM M' that accepts the set of palindromes over \{a, b\}, $tc_{M'}(n) = 3(n + 1) + 1$.
 - there is a tradeoff between the complexity of a transition and the number of steps between M (in previous example) and M'

- **Complexity of Algorithms**
 - The *time* required to execute an algorithm tends to be a function of the *length of the input*.

 - **Average-case complexity**: computed by first multiplying the complexity of each possible computation (C_i) by the probability of that computation occurring (P_i) and then adding these product, i.e., $\sum_{i=1}^{m} P_i \cdot C_i$

 - The analysis requires the identification of the dominating steps in the algorithm and estimates the number of times these steps will be performed.
14.4 Analysis of the complexity of TMs

- Complexity of Algorithms

 - **Example (Insertion Sort Algorithm).** The time complexity of the algorithm is proportional to the *number of times* the body of the *WHILE*-loop is executed.

 ![Insertion Sort Diagram]

 Consider again our example unsorted list of keys:

 14 3 22 9 10 14 2 7 25 6

 The first pass considers the first key, which is 14, and results in:

<table>
<thead>
<tr>
<th>3 22 9 10 14 2 7 25 6</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted list</td>
<td>sorted list</td>
</tr>
</tbody>
</table>

 After the second pass:

<table>
<thead>
<tr>
<th>22 9 10 14 2 7 25 9</th>
<th>3 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted list</td>
<td>sorted list</td>
</tr>
</tbody>
</table>

 After the sixth pass:

<table>
<thead>
<tr>
<th>2 7 25 6</th>
<th>3 9 10 14 14 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted list</td>
<td>sorted list</td>
</tr>
</tbody>
</table>
Insertion Sort Algorithm

Program InsertSort(inout: List; in: ListLength)
var PivotPosition, I: integer;
Pivot: ListEntryType;
begin
 if (ListLength ≥ 2) then
 begin
 PivotPosition := 2;
 repeat
 Pivot := List[PivotPosition];
 I := PivotPosition;
 while (I > 1 and List[I - 1] > Pivot) do
 begin
 List[I] := List[I - 1];
 I := I - 1;
 end;
 List[I] := Pivot;
 PivotPosition := PivotPosition + 1;
 until (PivotPosition > ListLength)
 end.
Example (Insertion Sort Algorithm) (Continued).

Worst-case: when the original list is in the reverse order, since

When the pivot’s entry is the 2\text{nd} entry, the loop body is executed 1
When the pivot’s entry is the 3\text{rd} entry, the loop body is executed 2
When the pivot’s entry is the \text{m}^{\text{th}} entry, the loop body is executed \text{m} - 1

Hence if |list| = n, the worst case complexity of the algorithm is

\[1 + 2 + \ldots + (n - 1) = \frac{n(n - 1)}{2} = \frac{1}{2}(n^2 - n) \in O(n^2) \]