Chapter 14

Time Complexity

Time Complexity

- The study of complexity of a problem is the study of the complexity of the algorithm that solves the problem.
- The computational complexity of an algorithm is measured by the amount of resources required to carry it out, i.e., time and space.
- The time complexity of a computation C is determined by the amount of time required to perform C, whereas the space complexity of C is determined by the amount of storage space required by C.

- The rate of growth of a function, which measures the increase of the function values as the input gets arbitrarily large, is determined by the most significant contributor to the growth of the function.
- Table 14.2 (Growth of functions)

n	0	5	10	25	50	100	1,000
20 <i>n</i> + 500	500	600	700	1,000	1,500	2,500	20,500
n^2	0	25	100	625	2,500	10,000	1,000,000
$n^2 + 2n + 5$	5	40	125	680	2,605	10,205	1,002,005
$n^2/(n^2+2n+5)$	5) 0	0.625	0.800	0.919	0.960	0.980	0.998

the linear and constant terms of n² + 2n + 5 are called the lower-order terms, which do not significantly contribute to the growth of the function values.

- Defn 14.2.1 Let $f: N \rightarrow N$ and $g: N \rightarrow N$ be one-variable number-theoretic functions.
 - i. f is said to be of order g, written $f \in O(g)$, if there is a positive constant c and natural number n_0 such that

$$f(n) \le c \times g(n), \forall n \ge n_0$$

- ii. $O(g) = \{ f \mid f \text{ is of order } g \}$, i.e., the set of all functions of order g, is called the "big oh of g"
- y f is of order g, written f ∈ O(g), if the growth of f is bounded by a constant multiple of the values of g

- The rate of growth is determined by the most significant contributor to the growth of the function.
- If $f \in O(g)$ and $g \in O(f)$, then given two positive constants C_1 and C_2 ,

$$f(n) \le C_1 \times g(n), \ \forall n \ge n_1;$$

 $g(n) \le C_2 \times f(n), \ \forall n \ge n_2$

f and g have the same rate of growth, i.e., neither f nor g grow faster than the other.

- A function f is said to <u>exponentially</u> (<u>polynomially</u>, respectively) bounded if $f \in O(2^n)$ ($f \in O(n^r)$, respectively).
 - Example 14.2.2 Let $f(n) = n^2 + 2n + 5$ and $g(n) = n^2$. Then $g \in O(f)$, since $n^2 \le n^2 + 2n + 5$, $\forall_{n \in N}, n_0 = 0$, and C = 1. $f \in O(g)$, since $2n \le 2n^2$ and $5 \le 5n^2$, $\forall_{n \ge 1}$. Then $f(n) = n^2 + 2n + 5 \le n^2 + 2n^2 + 5n^2 = 8n^2 = 8 \times g(n)$, $\forall_{n \ge 1}$. Thus $f \in O(n^2)$
 - Example 14.2.1 Let $f(n) = n^2$ and $g(n) = n^3$. $f \in O(g)$, but $g \notin O(f)$.

Clearly, $n^2 \in O(n^3)$, since $n^2 \le n^3$, for $\forall n \in \mathbb{N}$, $n_0 = 0$, and C = 1.

Suppose that $n^3 \in O(n^2)$. Then there exists constants C and n_0 . \ni .

$$n^3 \leq C \times n^2, \ \forall n \geq n_0.$$

Let $n_1 = \max(n_0 + 1, C + 1)$. Then

$$n_1^3 = n_1 \times n_1^2 > C \times n_1^2$$
, since $n_1 > C$,

contradicting the inequality that $n_1^3 \le C \times n_1^2$. Thus $n^3 \notin O(n^2)$.

- Using limits to determine the asymptotic complexity of two functions
- Let f & g be two number-theoretic functions
 - If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$, then $f \in O(g)$, but $g \notin O(f)$
 - If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ with $0 < c < \infty$, then $f \in \Theta(g)$, and $g \in \Theta(f)$ where $\Theta(g) = \{ f \mid f \in O(g) \text{ and } g \in O(f) \}$
 - If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$, then $f \notin O(g)$ and $g \in O(f)$
- Example. Let $f(n) = n^2$ and $g(n) = n^3$. $f \in O(g)$, but $g \notin O(f)$. Since $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{1}{n} = 0$, $f \in O(g)$, but $g \notin O(f)$.

TABLE 14.3 A Big O Hierarchy

Big Oh (Big O)	Name
O(1)	constant
$O(\log_a(n))$	logarithmic
O(n)	linear
$O(n \log_a(n))$	$n \log n$
$O(n^2)$	quadratic
$O(n^3)$	cubic
$O(n^r)$	polynomial $r \ge 0$
$O(b^n)$	exponential $b > 1$
O(n!)	factorial

TABLE 14.4 Number of Transitions of Machine with Time Complexity tc_{M} with Input of Length n

n	$\log_2(n)$	n	n²	n ³	2 ⁿ	<i>n</i> !
5	2	5	25	125	32	120
10	3	10	100	1,000	1,024	3,628,800
20	4	20	400	8,000	1048576	2.4 ×10 ¹⁸
30	4	30	900	27,000	1.0×10 ⁹	2.6 ×10 ³²
40	5	40	1,600	64,000	1.1×10 ¹²	8.1 ×10 ⁴⁷
50	5	50	2,500	125,000	1.1×10 ¹⁵	3.0×10 ⁶⁴
100	6	100	10,000	1,000,000	1.2 ×10 ³⁰	> 10 ¹⁵⁷
200	7	200	40,000	8,000,000	1.6 ×10 ⁶⁰	> 10 ³⁷⁴

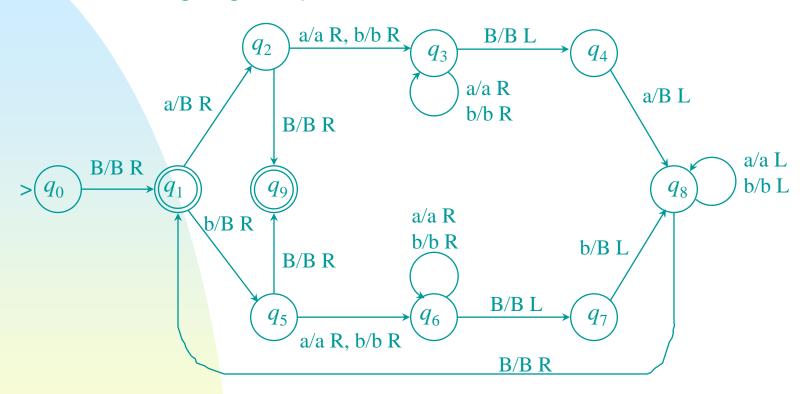
14.3 Time Complexity

Computational Complexity of TMs

- Given a TM M, M accepts the language L in polynomial-time if L = L(M) and there exists P(n), a polynomial expression, such that M accepts any $w \in L(M)$ in $\leq P(|w|)$ steps.
- A problem is <u>tractable</u> if there is a DTM that solves the problem whose computations are *polynomially bounded*.
- A language L is <u>decidable</u> in *polynomial time* if there exists a TM M that accepts L with $tc_M \in O(n^r)$, where $r \in N$ is independent of n.
- > The family of languages decidable in polynomial time is denoted P, e.g.,
 - Q: Is the language of palindromes over {a, b} decidable in polynomial time?
 - A: yes, there exists TM A that accepts the language in $O(n^2)$ time as shown on P.444 (a TM that accepts palindromes), where $tc_M(n) = (n^2 + 3n + 2) / 2 \in O(n^2)$
- A language L is said to be accepted in non-deterministic polynomial time if there is a NDTM M that accepts L with $tc_M \in O(n^r)$, $r \in N$ and r is independent of n. This family of language is denoted NP.

14.3 Time Complexity of a TM

Example: Let the transition diagram of the TM M that accepts the language of palindromes over {a, b} be



(* When evaluating the time complexity of a TM, we assume that the computations terminates for every input since it makes no sense to discuss the efficiency of a computation that continue *indefinitely* *)

14.3 Time Complexity of a TM

- <u>Example</u>. Consider the actions of *M* when processing an *even*-length (palindrome) input string. The computation alternates between sequences of right (RM) and left (LM) movements.
 - RM: requires k+1 transitions, where k is the length of the non-blank portion of the tape
 - > LM: this requires *k* transitions
 - > A pair of RM and LM reduces the length of nonblank portion of the tape by 2.
 - \rightarrow It requires n/2 iterations of the RM-LM for accepting a (palindrome) string of |n|

<u>Iteration</u>	Direction	Transitions
1	R	<i>n</i> +1
	L	n
2	R	<i>n</i> -1
	L	<i>n</i> -2
3	R	<i>n</i> -3
	L	n-3 n-4
:	:	:
(n/2) + 1	R	1

The time complexity of M is (same as odd-length): $\sum_{i=1}^{\infty} i = (n+2)(n+1)/2 \in O(n^2)$ 12

14.3 Time Complexity of a TM

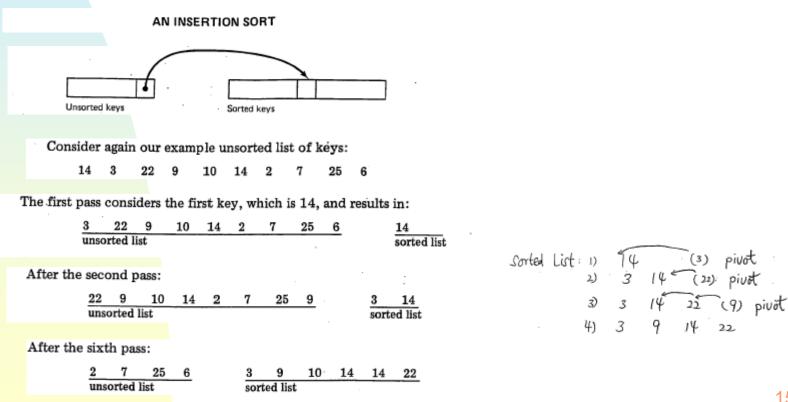
- Time complexity of a TM is determined by the maximum number of steps (i.e., transitions) executed during the computation, whereas the space complexity of a TM computation is defined to be number of tape cells required by the computation.
- If the <u>time complexity</u> of a TM computation is n, then the <u>space complexity</u> of that computation is $\leq n + 1$.
 - The space complexity of a TM computation may be less than the number of cells to hold the processing string as the TM may not have to process the entire string in order to accept it.
- We measure the time complexity of a TM M by the worstcase performance of M (occurred when M accepts the input string) with input string of length n, denoted tc_M(n).

14.3 Analysis of the complexity of TMs

- Example 14.3.1. Given a two-tape TM M' that accepts the set of palindromes over $\{a, b\}$, $tc_{M'}(n) = 3(n + 1) + 1$.
 - there is a tradeoff between the complexity of a transition and the number of steps between M (in previous example) and M
- Complexity of Algorithms
 - The time required to execute an algorithm tends to be a function of the length of the input.
 - Average-case complexity: computed by first multiplying the complexity of each possible computation (C_i) by the probability of that computation occurring (P_i) and then adding these product, i.e., $\sum_{i=1}^{m} P_i \cdot C_i$
 - The analysis requires the identification of the dominating steps in the algorithm and estimates the number of times these steps will be performed.

14.4 Analysis of the complexity of TMs

- Complexity of Algorithms
 - Example (Insertion Sort Algorithm). The time complexity of the algorithm is proportional to the number of times the body of the WHILE-loop is executed.



Insertion Sort Algorithm

```
Progam InsertSort(inout: List; in: ListLength)
      PivotPosition, I: integer;
var
      Pivot: ListEntryType;
begin
  if (ListLength \geq 2) then
      begin
          PivotPosition := 2;
          repeat
                Pivot := List[PivotPosition];
                / := PivotPosition;
                while (I > 1 \text{ and List}[I - 1] > \text{Pivot}) do
                  begin
                        List[/] := List[/-1];
                        I := I - 1;
                   end:
                List[I] := Pivot;
                PivotPosition := PivotPosition + 1;
          until (PivotPosition > ListLength)
      end.
```

14.4 Analysis of the complexity of TMs

<u>Example</u> (<u>Insertion Sort Algorithm</u>) (Continued).

Worst-case: when the original list is in the reverse order, since When the pivot's entry is the 2nd entry, the loop body is executed 1 When the pivot's entry is the 3rd entry, the loop body is executed 2

1

When the pivot's entry is the m^{th} entry, the loop body is executed m-1

Hence if |list| = n, the worst case complexity of the algorithm is

$$1 + 2 + ... + (n - 1) = n(n - 1)/2 = 1/2(n^2 - n) \in O(n^2)$$