Chapter 4

Normal Forms for CFGs
4.5 Chomsky Normal Form

- **Defn 4.4.1** A CFG $G = (V, \Sigma, P, S)$ is in *Chomsky normal form* if each rule in G has one of the following forms:

 i) $A \rightarrow BC$

 ii) $A \rightarrow a$

 iii) $S \rightarrow \lambda$

 where $A, B, C \in V$ and $B, C \in V - \{S\}$ and $a \in \Sigma$

- A *simplified* normal form which restricts the length & composition of the R.H.S. of a rule in CFG

- The *derivation tree* for a string generated by a CFG in Chomsky normal form is a *binary tree*
4.5 Chomsky Normal Form

Theorem 4.4.2 Let $G = (V, \Sigma, P, S)$ be a CFG. There is an algorithm to construct a grammar $G' = (V', \Sigma', P', S')$ in chomsky normal form that is equivalent to G.

Proof (sketch):

(i) For each rule $A \rightarrow w$, where $|w| > 1$, replace each terminal a in w by a distinct variable Y & create new rule $Y \rightarrow a$.

(ii) For each modified rule $X \rightarrow w'$, w is either a terminal or a string in V^*. Rules in the latter form must be broken into a sequence of rules, each of whose R.H.S. consists of two variables.

Example 4.4.1

One of the applications of using CFGs that are in Chomsky Normal Form:

- Constructing binary search trees to accomplish “optimal” time & space search complexity for parsing an input string.
4.1 Grammar Transformations

- **Lemma 4.1.1** Let $G = (V, \Sigma, P, S)$ be a CFG. There is a
 CFG $G' = (V', \Sigma, P', S')$ that satisfies

 i) $L(G) = L(G')$

 ii) Rules in P' are of the form

 $$A \rightarrow w$$

 where $A \in V'$ and $w \in ((V - \{S\}) \cup \Sigma)^*$.

- **Proof.** If S is a *recursive variable*, then construct G' by creating a new *start symbol* S' & adding $S' \rightarrow S$ to P', i.e.,

 $$G' = (V \cup \{S'\}, \Sigma, P \cup \{S' \rightarrow S\}, S').$$

 If $S \xrightarrow{G} u$, then $S' \xrightarrow{G'} S \xrightarrow{G'}^* u$, where $u \in \Sigma^*$.

- **Example.** 4.1.1 Assume that P in G includes

 $$S \rightarrow aS \mid AB \mid AC,$$

 then P' in G' should include $S' \rightarrow S$, $S \rightarrow aS \mid AB \mid AC$
4.2 Elimination of λ-rules

- Nullable variables are variables that can derive λ.

- A grammar w/o nullable variables is called non-contracting grammar since the application of a rule cannot decrease the length of the sentential form.

- It is desirable to avoid the generation of (nullable) variables that are subsequently removed by λ-rules.

- The removal of nullable variables in a grammar guarantees that during process of the deriving a terminal string, each variable generates terminal symbol(s).

- The derivation of a terminal string in a grammar G is more cost-effective if G is noncontracting than if G is contracting.
4.2 Elimination of λ-rules

Algorithm 4.2.1 Construction of Sets of Nullable Variables

Input: A CFG $G = (V, \Sigma, P, S)$

Output: Set of Nullable Variables

1. $\text{NULL} := \{ A \mid A \rightarrow \lambda \in P \}$
2. Repeat
 2.1. $\text{PREV} := \text{NULL}$
 2.2. For each variable $A \in V$ do
 If $\exists A \rightarrow w$, where $w \in \text{PREV}^*$ do
 $\text{NULL} := \text{NULL} \cup \{ A \}$
 Until $\text{NULL} = \text{PREV}$.

(Note: $w \in \text{PREV}^*$ indicates that $A (\rightarrow w)$ produces entirely *nullable* variables)
4.2 Elimination of λ-rules

Example 4.2.1 Given the following CFG

\[
S \rightarrow ACA \\
A \rightarrow aAa \mid B \mid C \\
B \rightarrow bB \mid b \\
C \rightarrow cC \mid \lambda
\]

Using Algorithm 4.1.2, the set of nullable variables can be computed

<table>
<thead>
<tr>
<th>Iteration</th>
<th>NULL</th>
<th>PREV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{ C }</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>{ A, C}</td>
<td>{ C }</td>
</tr>
<tr>
<td>2</td>
<td>{ S, A, C}</td>
<td>{ A, C}</td>
</tr>
<tr>
<td>3</td>
<td>{ S, A, C}</td>
<td>{ S, A, C}</td>
</tr>
</tbody>
</table>
4.2 Elimination of λ-rules

- An essentially noncontracting grammar G
 - includes $S \to \lambda$, if $\lambda \in L(G)$
 - excludes any λ-rules
 - yields only noncontracting derivations, with the exception of $S \Rightarrow \lambda$.

- **Theorem 4.2.3** Let $G = (V, \Sigma, P, S)$ be a CFG. There is a CFG $G_L = (V_L, \Sigma, P_L, S_L)$ w/o λ-rules that satisfies
 - $L(G_L) = L(G)$.
 - S_L is not a recursive variable.
 - $A \to \lambda \in P_L$ iff $\lambda \in L(G) \& A = S_L$.
4.2 Elimination of λ-rules

- **Constructing G_L from G.**

 (i) S_L is **not** a recursive variable. Any recursive start variable can be made nonrecursive according to Lemma 4.1.1.

 (ii) If $\lambda \in L(G)$, then $S_L \to \lambda \in P_L$.

 (iii) Delete all the λ-rules in G, except $S_L \to \lambda$, from P_L as follows:

 If $A \to w \in P$, $w = w_1 A_1 w_2 A_2 \ldots w_k A_k w_{k+1}$, and A_1, \ldots, A_k are nullable variables, then create $2^k - 1$ new rules in P_L, i.e., a set of 2^k possible combinations with the inclusion and exclusion of A_1, A_2, \ldots, A_k.

- **Example 4.2.2** \{ S, A, C \} are nullable variables of G, where

 $$
 G: S \to ACA \\
 A \to aAa | B | C \\
 B \to bB | b \\
 C \to cC | \lambda
 $$

 $$
 G_L: S \to ACA | AC | CA | AA | A | C | \lambda \\
 A \to aAa | aa | B | C \\
 B \to bB | b \\
 C \to cC | c
 $$
4.2 Elimination of λ-rules

Example 4.2.3 Let G be the grammar

$$
\begin{align*}
S & \rightarrow ABC \\
A & \rightarrow aA | \lambda \\
B & \rightarrow bB | \lambda \\
C & \rightarrow cC | \lambda
\end{align*}
$$

G generates $a^*b^*c^*$. The nullable variables of G are S, A, B, and C. The equivalent grammar of G w/o λ-rules is G_L, where

$$
\begin{align*}
S & \rightarrow ABC | AB | AC | BC | A | B | C | \lambda \\
A & \rightarrow aA | a \\
B & \rightarrow bB | b \\
C & \rightarrow cC | c
\end{align*}
$$
4.3 Elimination of Chain rules

- **Definition.** A rule of the form \(A \rightarrow B \), where \(A, B \in V \), which simply renames a variable in a derivation, is a *chain rule*.

- The removal of chain rules
 - *increase* the number of *rules* in the grammar, but
 - *reduce* the *length* of derivations

- **Example.** Consider the set of rules \(P \)

 \[
 A \rightarrow aA \mid a \mid B \\
 B \rightarrow bB \mid b \mid C
 \]

 Eliminating the chain rule \(A \rightarrow B \) by (i) adding \(A \rightarrow w \), for every rule \(B \rightarrow w \), and (ii) delete \(A \rightarrow B \).

 Hence, \(P \) is modified as

 \[
 A \rightarrow aA \mid a \mid bB \mid b \mid C \\
 B \rightarrow bB \mid b \mid C
 \]

 However, another *chain rule* \(A \rightarrow C \) was created.
4.3 Elimination of Chain rules

Algorithm 4.3.1. Construction of the Set CHAIN(A)

Input: A CFG \(G = (V, \Sigma, P, S) \) and variable \(A \)

Output: The set of chain rules of \(A \)

1. \(\text{CHAIN}(A) := \{ A \} \)
2. \(\text{PREV} := \emptyset \)
3. **Repeat**
 3.1. \(\text{NEW} := \text{CHAIN}(A) – \text{PREV} \)
 3.2. \(\text{PREV} := \text{CHAIN}(A) \)
 3.3. **For each variable** \(B \in \text{NEW} \) **do**
 For each rule \(B \rightarrow C \) **do**
 \(\text{CHAIN}(A) := \text{CHAIN}(A) \cup \{ C \} \)
 Until \(\text{CHAIN}(A) = \text{PREV} \).
4.3 Elimination of Chain rules

Theorem 4.3.3 Let \(G = (V, \Sigma, P, S) \) be a CFG. There is a CFG \(G_C = (V, \Sigma, P_C, S) \) that satisfies

1) \(L(G_C) = L(G) \).
2) \(G_C \) has no chain rules.

Proof. Using \(P & CHAIN(A) \), we compute the \(A \) rules in \(G_C \).

The rule \(A \to w \) is in \(P_C \) if \(\exists \) variable \(B \) & string \(w \).

i) \(B \in CHAIN(A) \)

ii) \(B \to w \in P \)

iii) \(w \notin V \) (ensures that \(P_C \) does not contain chain rules).

Let \(w \in L(G) & A \Rightarrow_B \) be a maximal sequence of chain rules used to derive \(w \), which can be generated by

\[
\begin{align*}
S & \Rightarrow^{*} uAv \Rightarrow^{*} uBv \Rightarrow^{*} upv \Rightarrow^{*} w, \\
S & \Rightarrow^{*} uAv \Rightarrow^{*} upv \Rightarrow^{*} w
\end{align*}
\]

where \(B \to p \in P \) is not a chain rule.
4.3 Elimination of Chain rules

Example 4.3.1. Given the following CFG

\[
S \rightarrow ACA \mid CA \mid AA \mid AC \mid A \mid C \mid \lambda
\]
\[
A \rightarrow aAa \mid aa \mid B \mid C
\]
\[
B \rightarrow bB \mid b
\]
\[
C \rightarrow cC \mid c
\]

Using Algorithm 4.3.1, we generate

\[
\text{CHAIN}(S) = \{ S, A, C, B \}
\]
\[
\text{CHAIN}(A) = \{ A, C, B \}
\]
\[
\text{CHAIN}(B) = \{ B \}
\]
\[
\text{CHAIN}(C) = \{ C \}
\]

Using these CHAIN sets, we generate \(G_C \), where \(P_C \in G_C \) is

\[
S \rightarrow ACA \mid CA \mid AA \mid AC \mid aAa \mid aa \mid bB \mid b \mid cC \mid c \mid \lambda
\]
\[
A \rightarrow aAa \mid aa \mid bB \mid b \mid cC \mid c
\]
\[
B \rightarrow bB \mid b
\]
\[
C \rightarrow cC \mid c
\]
4.7 Removal of Direct Left Recursion

- Recursion is necessary to generate strings of arbitrary length. Left recursion causes problems, not recursion in general.

- *Directly left recursive rules* (e.g. $A \rightarrow Aa$) introduce the possibility of unending computations since repeated applications of them fail to generate a *prefix* that can terminate the parse.

- To avoid the possibility of a non-terminating parse, directly left recursive rules must be removed.

- **Example.**

<table>
<thead>
<tr>
<th>Direct left-recursive rules</th>
<th>No direct left-recursive rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_1: $A \rightarrow Aa \mid b$</td>
<td>G_1': $A \rightarrow bZ \mid b, Z \rightarrow aZ \mid a$</td>
</tr>
<tr>
<td>G_2: $A \rightarrow Aa \mid Ab \mid b \mid c$</td>
<td>G_2': $A \rightarrow bZ \mid cZ \mid b \mid c$</td>
</tr>
<tr>
<td>G_3: $A \rightarrow AB \mid BA \mid a$</td>
<td>G_3': $A \rightarrow BAZ \mid aZ \mid BA \mid a$</td>
</tr>
<tr>
<td>$B \rightarrow b \mid c$</td>
<td>$Z \rightarrow BZ \mid B$</td>
</tr>
<tr>
<td></td>
<td>$B \rightarrow b \mid c$</td>
</tr>
</tbody>
</table>
4.7 Removal of Direct Left Recursion

- The removal of any *direct left recursion* requires the addition of a new variable V, which introduces a set of *directly right recursive rules*.

- To remove direct left recursion on variable A, A is divided into:
 - *directly left recursive rules*: $A \rightarrow A u_1 | A u_2 | \ldots | A u_j$
 - *non-directly left recursive rules*: $A \rightarrow v_1 | v_2 | \ldots | v_k$, where A is not the first symbol in v_i ($1 \leq i \leq k$)

- **Strategy**: build a string in a left-to-right manner by applying (i) *non-recursive* rules first, followed by (ii) constructing the remaining symbols by right recursion.
 $$A \rightarrow v_1 | \ldots | v_k | v_1 Z | \ldots | v_k Z$$
 $$Z \rightarrow u_1 | \ldots | u_j | u_1 Z | \ldots | u_j Z$$

- **Example 4.5.1** Given the rules $A \rightarrow Aa | Aa b | bb | b$

The A rules are: $A \rightarrow bb | b | bb Z | b Z$

The Z rules are: $Z \rightarrow a | ab | a Z | ab Z$