
Widgets and Layouts

Widgets and Input Handling

• Android widget tutorial
• https://www.tutorialspoint.com/android/android_user_interface_controls.htm

• Event handling with listeners
• https://developer.android.com/guide/topics/ui/ui-events

https://www.tutorialspoint.com/android/android_user_interface_controls.htm
https://developer.android.com/guide/topics/ui/ui-events

Family Map Client Widgets
TextView (text labels)

text, textAppearance
.setClickable(boolean) – make clickable
.setOnClickListener(View.OnClickListener)

EditText (text fields)
inputType, ems
.addTextChangedListener(TextWatcher)

Space (blank space)
set layout_width and layout_height to specific values (e.g., 30dp)

Button
text
.setOnClickListener(View.OnClickListener)

ImageView (display image)
.setClickable(boolean) – make clickable
.setImageDrawable(IconDrawable) – set icon to display
.setOnClickListener(View.OnClickListener)

Switch (on/off)
.setChecked(boolean) – set check state
.setOnCheckedChangeListener(CompoundButton.OnCheckedChangeListener)

Spinner (dropdown list)
.setAdapter(ArrayAdapter) – specify list values
.setSelection(int) – specify selected item
onItemSelectedListener(AdapterView.OnItemSelectedListener)

SearchView
.setFocusable(boolean) – accept key focus
.setIconified(boolean) – make always visible
.requestFocusFromTouch() – request focus when touched
.setOnQueryTextListener(SearchView.OnQueryTextListener)

ScrollView
Wrap around any view to make it scrollable

RecyclerView
Dynamic list of items

ExpandableListView
Expandable list of items

The Layout Problem

• Positioning widgets on the screen where you want them with the
right sizes

• You don’t know exactly how big the device’s screen will be, so a
layout needs to adjust dynamically to different screen sizes
• You can have different layout XML files for different screen sizes, but you can’t

have a different file for EVERY possible size, so a layout needs to adjust the
best it can

• For a desktop UI, the analogous problem is adjusting the layout when
the user expands and contracts the window

• How is extra space allocated (i.e., who gets bigger when the window
expands, and who stays the same size?)

Layout – Blank Space Between Widgets

Widget

layout_marginTop

layout_marginBottom

layo
u

t_m
argin

R
igh

tla
yo

u
t_

m
ar

gi
n

Le
ft1. Margins

2. Space Widget

SpaceWidget Widget

layout_width

la
yo

u
t_

h
ei

gh
t

Layout - Scrolling

• Any activity that can become too big to fit on the screen should allow
the user to scroll (by swiping)

• This is one way to handle the fact that you don’t really know how big
the device screen will be

• To make a view scrollable, nest it in a ScrollView

• ScrollView lets the user scroll whenever the nested view is too big for
the available space

Layout Managers (ViewGroups)

• http://developer.android.com/guide/topics/ui/declaring-
layout.html

• Layout manager arranges its child widgets on the screen
• Sets each child’s width, height, and location on the screen

• Already seen LinearLayout and FrameLayout

http://developer.android.com/guide/topics/ui/declaring-layout.html

Layout Settings

• layout_* attributes tell the parent layout manager how to lay out
the widget

Universal Layout Settings (apply to all widgets)

• layout_width, layout_height

• match_parent
• Make my size match my parent’s size

• wrap_content
• Make me just big enough to display my contents

• Hard-coded size (e.g., 30dp)
• px – pixels
• in – inches
• mm – millimeters
• pt – points (1/72 of an inch)
• dp – density-independent pixels, 1/160 of an inch)
• sp – scale-independent pixels (similar to dp, but scaled by user’s font size preference)

LinearLayout

• Arranges children in either vertical column or horizontal row
• Important attributes

• orientation – vertical or horizontal
• gravity – if the children don’t take up all the space inside the LinearLayout, where

should they be placed (center, top, bottom, left, right, etc.)

• How should available empty space inside the LinearLayout be allocated to
the children?
• Put layout_weight attributes on the children indicating what proportion of the

empty space each child would like to have
• layout_weight values are numbers. Absolute values don’t matter, just the

relative sizes of the weights
• layout_weight=”0” means the child does not want any empty space

• layout_height=”0dp” or layout_width=”0dp” means let that
dimension be controlled entirely by the weight

LinearLayout

• Suppose there are three children

• Scenario #1
• If the weights are 0, 0, 0, nobody will get any extra space, and the children

will be positioned according to the LinearLayout’s gravity attribute

• Scenario #2
• If the weights are 1, 1, 1, the empty space will be allocated to the children

equally

• Scenario #3
• If the weights are 0, 1, 0, then the middle child will get all the empty space

and the first and third children won’t get any

GridLayout

• Arranges children in a row/column grid

• Important attributes
• rowCount, columnCount

• Child layout attributes
• layout_row, layout_column – location of child in the grid
• layout_rowSpan, layout_columnSpan – the number of rows and columns

occupied by the child (can span more than one row and one column)
• layout_gravity – if the child doesn’t take up all the space in its group of cells

where should it be placed? (center, top-left, bottom-middle, etc.)
• layout_rowWeight, layout_columnWeight – numbers indicating what

proportion of available empty space should be allocated to this child (in both
vertical and horizontal dimensions)

RelativeLayout

• Arranges children relative to the sides of the parent and/or relative to
each other

• For example, to build the layout above:
• A

• layout_alignParentTop, layout_alignParentLeft, layout_alignParentRight

• B
• layout_alignParentLeft, layout_alignParentBottom, layout_below=“A”,

layout_toLeftOf=“C”

• C
• layout_alignParentRight, layout_alignParentBottom, layout_below=“A”,

layout_toRightOf=“B”

A

B C

FrameLayout

• Contains a single child

• Useful for allocating space for widgets that are dynamically added or
removed at runtime (like fragments, but could be any widget)

• If a fragment does not dynamically appear and disappear, you do not
need to embed it in a FrameLayout. Instead, you can just hard-code
the fragment in the XML layout file using a <fragment> element
• Example: MapFragment contains static Google Map fragment that can be

embedded in a <fragment> element

RadioGroup

• Subclass of LinearLayout
• Can be horizontal or vertical

• RadioButtons nested in RadioGroup are mutually exclusive (only one
can be selected at a time)

Layout Exercises

• Login Fragment

• Map Fragment

• Person Activity

• Settings Activity

• What do the layouts for MainActivity and EventActivity have in
common?

Layout Exercises

• Login Fragment

• Map Fragment

• Person Activity

• Settings Activity

• What do the layouts for MainActivity and EventActivity have in
common?
• They both contain a single fragment
• MainActivity is dynamic, so its layout should contain a <FrameLayout>
• EventActivity is not dynamic, so its layout could contain a <FrameLayout> for

<fragment>

