Threads / AsyncTask

Goal

* Learn everything needed to complete the Family Map Login
assignment

* Thread concepts
* Android AsyncTasks
* Family Map Login Architecture

Threads

* By default, programs do one thing at a time

* They start executing in main(), and when main() completes, the
program terminates

main()

Threads

e Often, it is desirable for a program to do multiple things at the same
time (concurrently, in parallel)

* To do this, a program can create multiple “threads” of control, each of
which represents something the program is working on

main()

printDocumenty()

3 callWebApi()

2 >~

Threads

* A program starts with one “main” thread
e Additional threads can be created as needed

e Each thread has its own runtime stack, so it can run independently
from the other threads

main()

printDocumenty()

3 callWebApi()

x x
x Runtime Stack

Runtime Stack

Runtime Stack

Java Threads Example

public class JavaThreadExample {
public static void main(String[] args) {

CountingThread countUp = new CountingThread("UP", 0, 50, 1);
CountingThread countDown = new CountingThread("DOWN", 50, 0, -1);

countUp.start();
countDown.start();

System.out.printin("Leaving Main Thread");

class CountingThread extends Thread {

private String _name;
private int _start;
private int _stop;
private int _increment;

public CountingThread(String name, int start, int stop, int increment) {
_name = name;
_start = start;
_stop = stop;
_increment = increment;

}

public void run() {
for (inti=_start; i I=_stop; i += _increment) {
System.out.printin(_name + ":

+i);

}

User Interface Thread

* In a program with a graphical user interface (GUI), there is a special “Ul
thread” that processes all user interface activity

* All method calls on widget objects must be done on the Ul thread
* All event listeners are called on the Ul thread by the Ul system (Android)

main()

Ul Thread
3 Event Queue

EIEJE]JE|E|]E

1. Get next event from queue

x 2. Call listener on widget object passing it the event
eventListener(event)

User Interface Thread

* Event listeners should return quickly so they don’t tie up the Ul thread
(which would cause the Ul to “freeze” and become unresponsive)

* If an event listener needs to do something that takes a long time (print a
document, call a web API, etc.), it should do so on a background thread

main()

Ul Thread
i eventListener(event) Back%round Thread

Android AsyncTasks

* In Android, you can use regular Java threads to do background
processing

 However, Android also provides a class called AsyncTask, which is
better for background threads that need to perform Ul operations
(e.g., provide user feedback using progress bar, busy icon, etc.)

* AsyncWebAccess example
* AsyncWebAccess with Listener example

Family Map Login Architecture

onLoginFailed()

onlLoginSucceeded()

NOTIFICATIONS

onLoginFailed()
onLoginSucceeded()

> Main Activity

T~

» Login Fragment

A 4

- Login Async Task

Map Fragment

(not required for FM Login)

User Interface Layer

HttpURLConnection

\ 4

A

Server Proxy

AN

Model

N\

Request Response

Person Event

Model/Communication Layer

