
Threads / AsyncTask



Goal

• Learn everything needed to complete the Family Map Login 
assignment

• Thread concepts

• Android AsyncTasks

• Family Map Login Architecture



Threads

• By default, programs do one thing at a time

• They start executing in main(), and when main() completes, the 
program terminates

main()



Threads

• Often, it is desirable for a program to do multiple things at the same 
time (concurrently, in parallel)

• To do this, a program can create multiple “threads” of control, each of 
which represents something the program is working on

main()

printDocument()
callWebApi()



Threads

• A program starts with one “main” thread

• Additional threads can be created as needed

• Each thread has its own runtime stack, so it can run independently 
from the other threads

main()

printDocument()
callWebApi()

Runtime Stack

Runtime Stack
Runtime Stack



Java Threads Example
public class JavaThreadExample {

public static void main(String[] args) {

CountingThread countUp = new CountingThread("UP", 0, 50, 1);
CountingThread countDown = new CountingThread("DOWN", 50, 0, -1);

countUp.start();
countDown.start();

System.out.println("Leaving Main Thread");
}

}

class CountingThread extends Thread {

private String _name;
private int _start;
private int _stop;
private int _increment;

public CountingThread(String name, int start, int stop, int increment) {
_name = name;
_start = start;
_stop = stop;
_increment = increment;

}

public void run() {
for (int i = _start; i != _stop; i += _increment) {

System.out.println(_name + ": " + i);
}

}
}



User Interface Thread

• In a program with a graphical user interface (GUI), there is a special “UI 
thread” that processes all user interface activity

• All method calls on widget objects must be done on the UI thread 

• All event listeners are called on the UI thread by the UI system (Android)

main()
UI Thread

E E E E E E

Event Queue

1. Get next event from queue 

2. Call listener on widget object passing it the event 
eventListener(event)



User Interface Thread

• Event listeners should return quickly so they don’t tie up the UI thread 
(which would cause the UI to “freeze” and become unresponsive)

• If an event listener needs to do something that takes a long time (print a 
document, call a web API, etc.), it should do so on a background thread

main()
UI Thread

eventListener(event) Background Thread



Android AsyncTasks

• In Android, you can use regular Java threads to do background 
processing

• However, Android also provides a class called AsyncTask, which is 
better for background threads that need to perform UI operations 
(e.g., provide user feedback using progress bar, busy icon, etc.)

• AsyncWebAccess example

• AsyncWebAccess with Listener example



Family Map Login Architecture

Main Activity

Login Fragment Map Fragment

Login Async Task

Model

Person Event

Server Proxy

Request Response

User Interface Layer

Model/Communication Layer

onLoginFailed()
onLoginSucceeded()

onLoginFailed()
onLoginSucceeded()

NOTIFICATIONS

HttpURLConnection

(not required for FM Login)


