
Software Implementation
(Writing Quality Code)

void HandleStuff(CORP_DATA & inputRec, int crntQtr,
 EMP_DATA empRec, float & estimRevenue, float ytdRevenue,
 int screenX, int screenY, COLOR_TYPE & newColor,
 COLOR_TYPE & prevColor, STATUS_TYPE & status,
 int expenseType)
{
for (int i = 1; i <= 100; ++i) {
 inputRec.revenue[i] = 0;
 inputRec.expense[i] = corpExpense[crntQtr, i];
 }
UpdateCorpDatabase(EmpRec);
estimRevenue = ytdRevenue * 4.0 / (float)crntQtr ;
newColor = prevColor;
status = Success;
if (expenseType == 1) {
 for (int i = 1; i <= 12; ++i)
 profit[i] = revenue[i] - expense.type1[i];
 }
else if (expenseType == 2) {
 profit[i] = revenue[i] - expense.type2[i];
 }
else if (expenseType == 3)
 {
 profit[i] = revenue[i] - expense.type3[i];
 }
}

Quality Code Example
• If you would like to see an example of generally well-written code, look at

the Job Scheduler program

Reasons for Creating Methods
• One of our primary tools in writing quality code is knowing when and why

to create new methods

• Classes are abstractions that represent the “things” in a system
• Methods are abstractions that represent the “algorithms” in a system

• There are many reasons to create methods; we will focus on a few:

– Top-down decomposition of algorithms
– Avoiding code duplication
– Avoiding deep nesting

Strong Cohesion

• Just like classes, methods should be highly cohesive

• A cohesive method does one and only one thing, and
has a name that effectively describes what it does
– GetCustomerName, EraseFile, CalculateLoanPayment

• Methods that do too much become obvious if we

name them properly
– DoDishesAndWashClothesAndSweepFloor

Algorithm Decomposition
 • Long or complex methods can be hard to understand

• Long or complex methods can be simplified by factoring out

meaningful sections of code into well-named sub-methods

• The original method becomes a "driver" that calls the sub-methods (it
becomes shorter, simpler, and easier to understand)

• The extracted methods may be placed on different classes (i.e., put
sub-methods on the class that contains the data they use)

• Decomposition continues until methods are sufficiently short and
simple

• EX: Schedule getNextWorkDay, isWeekendDay, and isHoliday methods
• EX: Make File Parser

Comments on comments
• If you feel a need to comment a paragraph of code, consider putting

that section of code in a method of its own with a descriptive name

• This can do away with the need for the comment, and result in highly-
readable code

• Do whatever makes the code the most readable
– Factor out into separate method with a good name, or
– Leave code inline with a comment

• If a method is heavily commented, that might indicate that further

decomposition is necessary

Avoiding code duplication
• Avoiding code duplication is one of the most important principles of

software design

• Duplicated code makes software maintenance difficult and error-
prone

• If the same code is needed in multiple places, put the code in a
method that can be called wherever the code is needed

• Inheritance can also be used to avoid code duplication (inherit shared
code from a common superclass)

Good Method Names
• A method name should clearly and completely

describe what the method does
– If a method prints a report and re-initializes the printer, it should be named

PrintReportAndInitPrinter , not just PrintReport

• Method has no return value (i.e., void)

– Name should be a verb or verb phrase

• Method has return value (i.e., non-void)

– Name can be a verb or verb phrase
– Or, it can describe what the method returns instead of what it does
– IsPrinterReady, CurrentPenColor, NextCustomerId

Good Method Names
• Avoid meaningless verbs

– HandleCalculation, PerformServices, DealWithInput
– Methods that are not cohesive are often difficult to name

• Make method names long enough to be easily
understood (don’t abbreviate too much)

• Establish conventions for naming methods
– Boolean functions - IsReady, IsLeapYear, …
– Initialization - Initialize/Finalize, Setup/Cleanup, …
– Getters/setters - GetName, SetName, …
– Add/Remove, Insert/Delete

Parameters
• Use all of the parameters

• The more parameters a method has, the harder it is to

understand

• The fewer parameters the better

• One rule-of-thumb is that you should limit parameters
to no more than 7, and that many should be rare

• Order parameters as follows: in, in-out, out

Guidelines for initializing data
• Improper data initialization is one of the most fertile

sources of error in computer programming

• Initialize variables when they're declared

• Declare variables close to where they're used
– Variables don't have to be declared at the top of the method

• Check for the need to reinitialize a variable

– Counters, accumulators, etc.

• Compiler warnings can help find un-initialized variables

Code Layout
• The physical layout of the code strongly affects readability

– Imagine a program with no newlines
– Imagine a program with no indentation

• Good layout makes the logical structure of a program clear

to the reader

• Good layout helps avoid introducing bugs when the code is
modified

• Pick a style that you like, and consistently use it

Whitespace
• Use whitespace to enhance readability

– Spaces, tabs, line breaks, blank lines

• Organize methods into "paragraphs"

– Paragraph = a group of closely related statements
– Separate paragraphs with one or more blank lines

• Indentation

– Use indentation to show the logical structure (i.e., nesting)

• Align elements that belong together (?)

– Sequence of variable declarations (align names)
– Sequence of assignments (align ='s)

Expressions
• Arithmetic and logic expressions can be hard to

understand
• Over-parenthesize arithmetic expressions

– Enhance readability
– Make clear the order of operator evaluation

• Insert extra spaces between operands, operators,
and parentheses to enhance readability

while (((startPath + pos) <= length(pathName)) &&
 pathName[startPath + pos] != ';') {
 …
}

while (startPath+pos<=length(pathName)&&
 pathName[startPath+pos]!=';') {
 …
}

Expressions
• Put separate conditions on separate lines

If (('0' <= inChar && inChar <= '9') || ('a' <= inChar &&
 inChar <= 'z') || ('A' <= inChar && inChar <= 'Z')) {
 …
}

If (('0' <= inChar && inChar <= '9') ||
 ('a' <= inChar && inChar <= 'z') ||
 ('A' <= inChar && inChar <= 'Z')) {
 …
}

Expressions
• Put expressions, or pieces of them, in well-

named submethods
If (IsDigit(inChar) || IsLowerAlpha(inChar) || IsUpperAlpha(inChar)) {
 …
}

If (IsAlphaNumeric(inChar)) {
 …
}

Bool IsAlphaNumeric(char c) {

 return (IsDigit(c) || IsLowerAlpha(c) || IsUpperAlpha(c));
}

• Or, even better

Placing curly
braces

for (int i=0; i < MAX; ++i) {
 values[i] = 0;
}

for (int i=0; i < MAX; ++i)
{
 values[i] = 0;
}

for (int i=0; i < MAX; ++i)
{ values[i] = 0;
}

for (int i=0; i < MAX; ++i)
 {
 values[i] = 0;
 }

Placing curly braces

for (int i=0; i < MAX; ++i)
 values[i] = 0;

 What about this?

Method parameters

• Use spaces to make method parameters readable

webCrawler->Crawl(rootURL,outputDir,stopWordsFile);

webCrawler->Crawl(rootURL, outputDir, stopWordsFile);

webCrawler->Crawl(rootURL, outputDir, stopWordsFile);

One statement per line
• Declare each variable on a separate line

– More robust under modification
– Easier to understand

 int * p, q; // oops! int * p; // correct
int * q;

x = 0; y = 0; x = 0;
y = 0;

 Don't put multiple statements on the same line

Deep nesting

• Excessive nesting of statements is one of the chief
culprits of confusing code

• You should avoid nesting more than three or four
levels

• Creating additional sub-methods is the best way
to remove deep nesting

Wrapping long lines
• When should you wrap long lines?

– When they won't fit on the screen?
– Whose screen?

• Wrapping between 80 and 100 characters is common

– Lines longer than that are hard to read
– It discourages deep nesting

• Align continuation lines in a way that maximizes

readability

Wrapping long lines
private boolean isNthDayOfWeekInMonth(Calendar date, int n,
 int dayOfWeek, int month) {
 ...
}

target = AddDependenciesToTarget(dependencyGraph, targetName,
 dependencyList);

DailySchedule newDailySchedule =
 new DailySchedule(getNextSchedulableDay(today));

return (date.get(Calendar.DAY_OF_WEEK) == dayOfWeek &&
 date.get(Calendar.MONTH) == month &&
 date.get(Calendar.DAY_OF_WEEK_IN_MONTH) == n);

Pseudo-Code
• When writing an algorithmically complex method, write an outline of

the method before starting to code

• Use English-like statements to describe the steps in the algorithm

• Avoid syntactic elements from the target programming language
– Design at a higher level than the code itself

• Write pseudo-code at the level of intent

– What more than how (the code will show how)

• Write pseudo-code at a low enough level that generating code from it is
straightforward
– If pseudo-code is too high-level, it will gloss over important details

Example of bad pseudo-code

increment resource number by 1
allocate a dlg struct using malloc
if malloc() returns NULL then return 1
invoke OSrsrc_init to initialize a resource
 for the operating system
*hRsrcPtr = resource number
return 0

• Intent is hard to understand
• Focuses on implementation rather than intent
• Includes too many coding details
• Might as well just write the code

Example of good pseudo-code
Keep track of current number of resources in use
If another resource is available
 Allocate a dialog box structure
 If a dialog box structure could be allocated
 Note that one more resource is in use
 Initialize the resource
 Store the resource number at the location
 provided by the caller
 EndIf
EndIf
Return TRUE if a new resource was created
else return FALSE

• Written entirely in English
• Not programming language specific
• Written at level of intent
• Low-level enough to write code from

Choose Good Variable Names
• Too Long

– NumberOfPeopleOnTheUSOlympicTeam

• Too Short
– N

• Just Right

– NumTeamMembers

• Are short variable names always bad? NO
– Loop control variables: i, j, k, idx
– Temporary variables: tmp
– Names that are naturally short: x, y, z

C++ naming conventions
• Separating words in identifiers

– "Camel-case"
• WebCrawler, documentMap

– Separate words with underscores
• Web_crawler, document_map

• First char of class name is usually upper-case

• First char of method name can be either upper or lower case,

but be consistent

• First char of variable name is usually lower-case

• Constant names are usually all upper-case

Other useful naming conventions

• Distinguish global, object, local, and
parameter variables
– g_GlobalVariable
– m_MemberVariable
– _memberVariable
– localVariable

Creating readable names
• Names matter more to readers of the code than to the

author of the code

• Don't use names that are totally unrelated to the
entities they represent (e.g., “Thingy”)

• Don't differentiate variable names solely by
capitalization
– int temp;
– char Temp;

• Avoid variables with similar names but different

meanings
– int temp;
– Mountain timp;

Creating readable names
• Avoid words that are commonly misspelled

• Avoid characters that are hard to distinguish (1

and l)

• Avoid using digits in names (e.g., File1 and
File2)
– SrcFile and DestFile might be better
– Sometimes Dr. Seuss naming is the best you can do

(Thing1 and Thing2)

Abbreviation guidelines
• Only abbreviate when you have to

• Remove non-leading vowels (Computer -> Cmptr)

• Or, Use the first few letters of a word (Calculate -> Calc)

• Don't abbreviate by removing just one character from a word (use

"name" instead of "nam")

• Create names that you can pronounce

• Abbreviate consistently

Project Code Evaluation

	Software Implementation �(Writing Quality Code)
	Slide Number 2
	Quality Code Example
	Reasons for Creating Methods
	Strong Cohesion
	Algorithm Decomposition�
	Comments on comments
	Avoiding code duplication
	Good Method Names
	Good Method Names
	Parameters
	Guidelines for initializing data
	Code Layout
	Whitespace
	Expressions
	Expressions
	Expressions
	Placing curly �braces
	Placing curly braces
	Method parameters
	One statement per line
	Deep nesting
	Wrapping long lines
	Wrapping long lines
	Pseudo-Code
	Example of bad pseudo-code
	Example of good pseudo-code
	Choose Good Variable Names
	C++ naming conventions
	Other useful naming conventions
	Creating readable names
	Creating readable names
	Abbreviation guidelines
	Project Code Evaluation

