
Unit Testing
CS 240 – Advanced Programming Concepts 



F-22 Raptor Fighter

2



F-22 Raptor Fighter
• Manufactured by Lockheed Martin & Boeing
• How many parts does the F-22 have?

3



F-22 Raptor Fighter
• What would happen if Lockheed assembled an F-

22 with "untested" parts (i.e., parts that were 
built but never verified)?

• It wouldn't work, and you probably would never 
be able to make it work
– Cheaper and easier to just start over

4



Managing Implementation Complexity

• Individual parts should be verified before being 
integrated with other parts

• Integrated subsystems should also be verified 

• If adding a new part breaks the system, the problem 
must be related to the recently added part

• Track down the problem and fix it

• This ultimately leads to a complete system that works

5



2 Approaches to Programming
• Approach #1
– "I wrote ALL of the code, but when I tried to 

compile and run it, nothing seemed to work!“

• Approach #2
– Write a little code (e.g., a method or small class)
– Test it
– Write a little more code
– Test it
– Integrate the two verified pieces of code
– Test it
– …

6



Unit Testing
• Large programs consist of many smaller pieces

– Classes, methods, packages, etc.

• "Unit" is a generic term for these smaller pieces

• Three important types of software testing are:
– Unit Testing (test units in isolation)
– Integration Testing (test integrated units)
– System Testing (test entire system that is fully integrated)

• Unit Testing is done to test the smaller pieces in 
isolation before they are combined with other 
pieces
– Usually done by the developers who write the code

7



What Unit Tests Do
• Unit tests create objects, call methods, and verify that 

the returned results are correct

• Actual results vs. Expected results

• Unit tests should be automated so they can be run 
frequently (many times a day) to ensure that changes, 
additions, bug fixes, etc. have not broken the code
– Regression testing

• Notifies you when changes have introduced bugs, and 
helps to avoid destabilizing the system

8



Test Driver Program
• The tests are run by a "test driver", which is a 

program that just runs all of the unit test cases

• It must be easy to add new tests to the test 
driver

• After running the test cases, the test driver 
either tells you that everything worked, or 
gives you a list of tests that failed

• Little or no manual labor required to run tests 
and check the results

9



JUnit Testing Design
• Write a separate test method for each test

– Marked with @Test annotation

• Set up method(s) may be executed before each test 
method
– Marked with @BeforeEach or @BeforeAll

• Tear down method(s) may executed after each test
– Marked with @AfterEach or @AfterAll

• Use JUnit Assertions.assert*() methods to 
implement test cases

• Failures reported in various ways, depending on language 
and tool (command-line, GUI, IDE integrated)

• Example:
– WordExtractor.java

– WordExtractorTest.java

10

https://junit.org/junit5/docs/current/api/org/junit/jupiter/api/Assertions.html
https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/15-unit-testing/code-examples/src/main/java/spellcheck/WordExtractor.java
https://faculty.cs.byu.edu/~jwilkerson/cs240/lecture-notes/15-unit-testing/code-examples/src/test/java/spellcheck/WordExtractorTest.java


Running Junit Tests from Intellij and 
Android Studio

• To run a single test class, in the “Project” tool 
window right-click on a test class name, and 
select “Run Tests” or “Debug Tests”

• To run all of your unit tests, right-click on the 
“test/java” folder, and select “Run All Tests” or 
“Debug All Tests”

11



Running Unit Tests from The 
Command-Line

• Write a test driver class whose “main” 
method invokes the 
org.junit.runner.JUnitCore class to run your 
unit tests

• Run your test driver program from the 
command-line:
java –cp build\classes\main;build\classes\test;libs\junit-
jupiter-api-5.5.1.jar;libs\junit-platform-console-
1.5.1.jar;libs\sqlite-jdbc-3.25.2.jar TestDriver

12



JUnit 5 Unit Testing Framework
• JUnit 5 Documentation
• Use JUnit 5 annotations to mark test methods

Annotation Description

@Test public void method() The annotation @Test identifies that a 
method is a test method. 

@BeforeEach public void method()
Will execute the method before each test. 
Can prepare the test environment (e.g. 
read input data, initialize the class). 

@AfterEach public void method()
Will execute the method after each test. 
Can cleanup the test environment (e.g. 
delete temporary data, restore defaults). 

13

https://junit.org/junit5/


JUnit 5 Unit Testing Framework
Annotation Description

@BeforeAll public void method()

Will execute the method once, before 
the start of all tests. Can be used to 
perform time intensive activities, for 
example to connect to a database. 

@AfterAll public void method()

Will execute the method once, after 
all tests have finished. Can be used to 
perform clean-up activities, for 
example to disconnect from a 
database. 

@Timeout(5) Fails if the method takes longer than 5 
seconds. 

@Timeout(value = 100, unit = 
TimeUnit.MILLISECONDS)

Fails if the method takes longer than 
100 milliseconds

14



Adding the JUnit Library to Your 
Project 

• Maven
<dependency>

<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-api</artifactId>
<version>5.5.1</version>
<scope>test</scope>

</dependency>

• Gradle (build.gradle file)
testCompile group: 'org.junit.jupiter', name: 
'junit-jupiter-api', version: '5.5.1'

15



A More Detailed Example

• code-example on website in the unit testing 
lecture notes

• Contains code for web-based spelling checker
• “Real” classes are in:
– src/main/java/spellcheck/*.java
– src/main/java/dataaccess/*.java

• “Test” classes are in:
– src/test/java/spellcheck/*.java
– src/test/java/dataaccess/*.java

16



Android Testing Framework
• Android provides a framework for writing automated unit 

tests based on Junit

• There are two types of Android unit tests
– Local Unit Tests

• These tests depend only on standard Java classes and can be ran on the 
development computer instead of on an Android device

• You will create local unit tests for the Family Map Server project

– Instrumented Unit Tests
• These tests depend on Android-specific classes and must be run on an Android 

device
• You will create instrumented unit tests for the Family Map Client project

17



Android Local Unit Tests

• Official Documentation
• Can run on the development computer without a 

device or emulator
• Module’s primary source code is located in the 

folder 
– <module>/src/main/java/<package>

• Local unit test code is located in the folder
– <module>/src/test/java/<package>

18

https://developer.android.com/training/testing/unit-testing/local-unit-tests.html


Database Unit Tests

• When writing unit tests for your database 
code, there are additional things to think 
about

• Put database driver JAR file on the class path
• Each unit test should start with a pristine 

database so prior tests have no effect
– Can re-create tables before each test
– Or, you can “rollback” the effects of each test so 

they are undone and don’t affect later tests

19


