
Image Editor Project

Introduction
Image manipulation programs like PhotoShop include various filters or transformations that are
applied to images to produce different effects. In this lab you will write a Java program that can
apply four different transformations on a loaded image:

● Invert colors
● Convert to grayscale
● Generate an “embossed” image
● Add a motion-blur effect

The first two transformations, invert and grayscale, modify each pixel independent of the values
of the pixels around it. Emboss and motion-blur, on the other hand, modify each pixel based on
the values of the other pixels around it. More detailed descriptions of each transformation are
given below.

The PPM File Format
All of the image formats you’re familiar with (.jpg, .png, .gif, etc) compress pixel information
which makes it hard to edit the pixels directly. So for this lab we will be using the .ppm
(portable pixelmap) file format which stores uncompressed pixel information as text.

The format of a PPM file is as follows (see this link):

1. Each PPM file begins with "P3"
2. Whitespace (blanks, TABs, CRs, LFs).
3. A width, formatted as ASCII characters in decimal.
4. Whitespace.
5. A height, again in ASCII decimal.
6. Whitespace.
7. The maximum color value, again in ASCII decimal. For this lab, this value will always be

255
8. A single whitespace character (usually a newline).
9. Sets of 3 numbers from 0-255, each representing an RGB color value, the first

representing the red value, the second representing the green value, and the third
representing the blue value. Each color value is separated by whitespace. A set of 3
color values represents a pixel.

Notes:

● The color values for a pixel (referenced in #9) are not necessarily all on the same line
● Whitespace includes newlines, spaces, tabs, comments, etc.
● There are exactly width * height pixels in the file. That is, there are in total 3*width*

height color values.

1

http://netpbm.sourceforge.net/doc/ppm.html

● The pixels are in row-major order. That is the first n values (where n = width)
represent the first row of the image, the 2nd n values represent the 2nd row, and so
forth.

● At any point in the file, there may appear comments that begin with a pound sign (#)
and end with a new line (\n). These should be ignored.

An alternative BNF-style PPM format specification using Java regex-like expressions is:

PPM_File ::= Header Pixels Separator*
Header ::= MagicNumber Separator Width Separator Height Separator MaxColorValue \s
MagicNumber ::= P3
Separator ::= \s+ Comment? \s* | Comment \s+
Comment ::= #[^\n]*\n
Width ::= \d+
Height ::= \d+
MaxColorValue ::= 255
Pixels ::= (Pixel (Separator Pixel)*)?
Pixel ::= RedColorValue Separator GreenColorValue Separator BlueColorValue
RedColorValue ::= Number
GreenColorValue ::= Number
BlueColorValue ::= Number
Number ::= [01](\d\d?)? | 2[0-4]\d | 25[0-5] | [3-9]\d?

Hint: Characters normally stand for themselves. For example P3 is the character P followed by
the character 3. Other such characters in the definition above are 6, #, 2, and 5. A special
character used above is \n meaning end-of-line character. The character class [xy] means the
character x or y. The character class [x-y] means any character from x to y. \s (defined as [
\n\t\r\f\x0B]) means any whitespace character and \d (defined as [0-9]) means any digit. A
sequence of characters, character classes, or groups can be grouped together by surrounding
them (and). A ? following a character, character class, or group means optional. A * following
a character, character class, or group means 0 or more. A + following a character, character
class, or group means 1 or more.

Creating Your Own Data Structure
You will need to load the PPM to be edited into some kind of internal data structure.
Remember, each pixel is made up of 3 integer color values that correspond to red, green, and
blue in that order.

Tip: If you want to convert an image to .ppm you can use GIMP (Gnu Image Manipulation
Program) or PhotoShop. GIMP is free online and is included in the CS Linux labs.

Command Line Syntax

java ImageEditor inputFileName outputFileName {grayscale|invert|emboss|motionblur
blurLength}

2

● The main class should be named ImageEditor.
● The inputfileName is the name of a file containing a ppm formatted picture.
● The outputFileName is the name of a file that will contain the transformed picture. It

need not exist before executing the transformation. If the file exists and is writable it will
be overwritten.

● The blurLength is a non-negative integer. It is usually less than 25.

As an example of running the program the following command would load bike.ppm, invert the
colors, and save it as bike-inverted.ppm:

java ImageEditor bike.ppm bike-inverted.ppm invert

The last command line option (representing a transformation) may be any of the following 4
strings.

● “invert”
● “grayscale”
● “emboss”
● “motionblur” which also requires a number after it to specify how much to blur

The following command would load bike.ppm, apply a motion blur of 10 pixels, and save it as
blurred.ppm:

java ImageEditor bike.ppm blurred.ppm motionblur 10

If the arguments are incorrect (either the wrong number of arguments, no number after
“motionblur”, etc) a usage statement should be printed to the screen and the program should
terminate. A usage statement informs the user what they should type to correctly run the
program. A possible usage statement for this program might be the string:

USAGE: java ImageEditor in-file out-file (grayscale|invert|emboss|motionblur motion-blur-length)

Transformation Descriptions
All transformations require an operation to be applied to each pixel in the image.

Invert
Every color value for every pixel is changed to its inverse value. For example, 0
becomes 255, 240 becomes 15, and 127 becomes 128. Remember that the minimum
color value is 0 and the maximum is 255.

Grayscale
To convert an image to grayscale, each pixel’s color value is changed to the average of
the pixel’s red, green, and blue value. For example:

3

Original pixel color values:

Red: 25 Green: 230 Blue: 122

Grayscale conversion: (25 + 230 + 122) / 3 = 125 (using integer division)
Red: 125 Green: 125 Blue: 125

Emboss
Assume an image is stored in a structure called image, with “height” x and “width” y.
Assume also that image[0][0] refers to the top-left of the image. For every pixel p at
position [x][y] (p = image[x][y]), set its red, green, and blue values to the same value by
doing the following:

Calculate the differences between red, green, and blue values for the pixel and the pixel
to its upper left.

redDiff = p.redValue - image[x-1][y-1].redValue
greenDiff = p.greenValue - image[x-1][y-1].greenValue
blueDiff = p.blueValue - image[x-1][y-1].blueValue

Find the largest difference (positive or negative). We will call this difference
maxDifference. For example, if redDiff is -10 and blueDiff is 5, maxDifference will be -10
(not 5 or 10). We then add 128 to maxDifference. If there are multiple equal differences
with differing signs (e.g. -3 and 3), favor the red difference first, then green, then blue.

v = 128 + maxDifference

If needed, we then scale v to be between 0 and 255 by doing the following:
If v < 0, then we set v to 0.
If v > 255, then we set v to 255.

The pixel’s red, green, and blue values are all set to v.

Be sure to account for the situation where r-1 or c-1 is less than 0. V should be 128
in this case.

Warning: Your code may not exactly match this pseudo-code. Many students face
problems at this point because they either don’t look to the upper left pixel (it may not be
image[x-1],[y-1] for your code) or they base the differences on already embossed/altered
pixels.

Motion blur
A number will be provided in the command line arguments if the command is
“motionblur.” We will call this number n. n must be greater than 0.

The value of each color of each pixel is the average of that color value for n pixels (from
the current pixel to n-1) horizontally.

Example: if we store the pixels in a 2d array, the motion blur would average each color
from pixel[x][y] to pixel[x][y+n-1]

4

Be sure to account for the situations where one or more of the values used in computing
the average do not exist. For example, if an image has width w and we are considering
the pixel on row r, column c, if c + n >= w, then we only average the pixels up to w.

Examples: see below
java ImageEditor crash_boat_jeep.ppm inverted_crash_boat_jeep.ppm invert

The crash_boat_jeep.ppm looks like:

The inverted image looks like this:

5

java ImageEditor policedonut.ppm grayscale_policedonut.ppm grayscale

policedonut.ppm looks like:

The grayscale image looks like this:

6

java ImageEditor temple.ppm embossed_temple.ppm emboss

The temple.ppm looks like:

7

The embossed image looks like this:

java ImageEditor funny_cat.ppm motionblur_funny_cat.ppm motionblur 20

The funny_cat.ppm looks like this:

8

The motionblur 20 image looks like this:

Submission for first 3 labs (Image Editor, Spelling Corrector, Evil Hangman)

Passing off:

● Your code must be on a lab machine and you need your path to your files when you
come in to pass off

● We will be running a script from the TA machines that will copy your java files from your
cs account to our local computer, and run tests on them

● Make a note of the file path then enter the queue for pass off.
● Remember any changes you make to your code will not affect the code in the temporary

file so you will need to re-copy them over.

9

