
How to Make Good JUnit
Tests

Using JUnit 5 tools

What are Unit Tests?
Wikipedia: Unit tests are typically automated tests written and run by software
developers to ensure that a section of an application (known as the "unit") meets
its design and behaves as intended. … To isolate issues that may arise, each test
case should be tested independently.

https://en.wikipedia.org/wiki/Unit_testing

What is JUnit?
Wikipedia: JUnit is a unit testing framework for the Java programming language.
JUnit has been important in the development of test-driven development. … JUnit
is linked as a JAR at compile-time. … A research survey performed in 2013 across
10,000 Java projects hosted on GitHub found that JUnit was the most commonly
included external library [at 30.7%].

https://en.wikipedia.org/wiki/JUnit

Basic Structure of JUnit Test
Setup: Labeled with a @BeforeEach tag, this function does any setting up of
variables and test state so that each test can run without having to worry about
initializing the its own state. It is called before every test.

Test: Labeled with @Test tag (and optionally @DisplayName to give it a name),
this function tests one aspect of one function. Generally, it will set up parameters
to the function, call the function, and then ensure that the function executed
correctly (using assertions).

Cleanup: Labeled with a @AfterEach tag, this function does any finalizing or
resetting of variables and test state, so that the next test case can be set up
without crashing (for example, closing a file that was opened). It is called after
every test, regardless of whether it passes or fails.

Simple Example
When you run this test you should
have the following printed in the
console:

Setup() called.
TestDecimalDivision() called.
Cleanup() called.

Process finished with exit code 0

How do you Check if a Function Throws an Exception?

assertThrows() takes 2 parameters. The first parameter is the class of what
exception we expect the function that we are testing to throw. The second
parameter is a lambda function that contains the function call that we are testing.
Lambda functions are out of the scope of this class, but all you need to know is
that this assertion runs the code in the lambda function and fails if the class in the
first parameter is not thrown.

Bad Example of Checking for Thrown Exception

Note how difficult it is to understand
what is being tested in this example.
While it is functionally the same as the
previous example, it takes 7 more lines
of code to express and it is much less
clear.

How do you Check for Correct Function Execution?
It is often not acceptable to just make
sure that the function returned the
right value (see line 21). Whenever
possible, you should verify with
another function call or by accessing
the state of objects acted upon (see
line 22).

How do you Use AssertEquals?
The assertEquals() function takes
two parameters: the expected value
and the actual value. If the expected
value has an equals() function
defined, it passes the actual value to
that and checks that it returns true. If
the expected value does not have an
equals() function defined, it will
simply compare the pointer values
(very common source of bugs).

Bad Examples of AssertEquals
Notice that the Person class
does not implement the
equals() method. The test
case will not work as expected
because it will compare the
two objects’ memory
addresses and fail because
the objects are equal, but
distinct, objects in memory.

Bad Examples of AssertEquals
This one is tricky because it passes the
test and seems to be okay. Alas, the
problem with this example is that the
intention is not clearly communicated.
Note that on line 13 the label “actual:”
is referring to the string literal “HELLO”.
This tells the reader that the actual value
is the string literal the value that we are
testing is the expected, when the reverse
is true. These two parameters should be
switched.

How do you Ensure a Test Passes only when Correct?

Make sure that all possible branches
are covered in your tests. Note the call
to fail() on line 27. A common
mistake is to just print the exceptions
stack trace and continue execution. The
problem in this case is that if execution
continued, the test case would never fail
and assertion and would thus pass the
test even though it executed incorrectly.

Bad Examples of Branch Coverage
This time, we only printed the stack trace
instead of calling fail(). You can see
that now the test case passes, even
though it failed to execute the way we
wanted it to! This is because a
NullPointerException is thrown at
line 23, and caught at line 26. Line 24 is
never executed, so it does not fail any
asserts. Make sure to cover all of your
test’s branches!

Exception thrown

How do you use the Right Assert?
Common Asserts:

● assertEquals(expected, actual) //Asserts that expected and actual are equal
● assertFalse(condition) //Asserts that the supplied condition is not true
● assertNotEquals(unexpected, actual) //Asserts that expected and actual are not equal
● assertNotNull(actual) //Asserts that actual is not null.
● assertNull(actual) //Asserts that actual is null.
● assertThrows(expectedType, executable) //Asserts that execution of the supplied

executable throws an exception of the expectedType and returns the exception
● assertTrue(condition) //Asserts that the supplied condition is true
● fail() //Fails a test with the given failure message
● assertDoesNotThrow (executable) //Assert that execution of the supplied executable does

not throw any kind of exception.

Note: Links to JUnit API for each function provided
Note: Each function above also has a signature with a String message parameter. It is a good idea to use this version of each function to give a
description about what would cause this assertion to fail.

https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html#assertEquals(java.lang.Object,java.lang.Object)
https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html#assertFalse(boolean)
https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html#assertNotEquals(java.lang.Object,java.lang.Object)
https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html#assertNotNull(java.lang.Object)
https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html#assertNull(java.lang.Object)
https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html#assertThrows(java.lang.Class,org.junit.jupiter.api.function.Executable)
https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html#assertTrue(boolean)
https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html#fail()
https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html#assertDoesNotThrow(org.junit.jupiter.api.function.Executable)

Bad Example of Assert Selection
This first example should use
assertEquals() instead of
assertTrue(). The second
example should use
assertFalse() instead of
assertEquals().

Remember: Always ask yourself if
there is another assert function
that is more clear or more concise
than what you’re using!

