
Family Map Server Specification
Acknowledgements
The Family Map project was created by Jordan Wild. Thanks to Jordan for this significant
contribution.

Family Map Introduction
Family Map is an application that provides a geographical view of your family history. One of the
most exciting aspects of researching family history is discovering your origins. Family Map
provides a detailed view of where you came from. It does so by displaying information about
important events in your ancestors’ lives (birth, marriage, death, etc.), and plotting their
locations on a Google or Amazon map.

Family Map uses a client/server architecture, which means it
consists of two separate programs (a “client” program and a
“server” program). The Family Map client is an Android app
that lets a user view and interact with their family history
information (see image on the left). The Family Map server is a
regular, non-Android Java program that runs at a
publicly-accessible location in the “cloud” (although, for
development purposes you can run it locally on your laptop or
some other machine). When a user runs the Family Map client
app, they are first asked to login. After authenticating the user’s
identity with the Family Map server, the client app retrieves the
user’s family history data from the server. The server is
responsible for maintaining user accounts as well as dispensing
family history data for Family Map users. Family Map’s
client/server architecture is typical of many real-world
applications that you are probably familiar with (Facebook,
Twitter, etc.)

In CS 240 you will design and implement both parts of the Family Map application. In Project 1
you will create your Family Map server. In Project 2 you will create your Family Map Android
client. (NOTE: In the real world you would typically develop the client and server simultaneously
rather than sequentially, but for pedagogical reasons we will ask you to create them
sequentially.)

1

Family Map Server (FMS)
This project focuses on designing, implementing, and testing the Family Map server. The server
is a regular Java program. When it runs the server does not display an interactive user
interface (i.e., it is “headless”). Rather than interacting with a user, it waits for Family Map
clients to connect to it over the Web for the purposes of authenticating user logins and retrieving
user family history information. Although it has no user interface, the server may display
diagnostic or informational messages in the console and/or in a log file. This can be useful for
debugging the server and monitoring its operation. Additionally, because we do not have real
family history data for our users, part of the server’s functionality is to generate artificial family
history data for each Family Map user.

The purpose of this project is to learn about and gain experience with the following:

● Designing, implementing, and testing a large, multi-faceted program
● Relational database concepts and programming
● Creation of server programs that publish web APIs
● Automated unit and integration testing

Data Definitions

Users
In order to use Family Map, one must first create a user account. Your server should store
information about each user account in its database. The following properties should be
associated with each user account:

UserName: Unique user name (non-empty string)
Password: User’s password (non-empty string)
Email: User’s email address (non-empty string)
First Name: User’s first name (non-empty string)
Last Name: User’s last name (non-empty string)
Gender: User’s gender (string: “f” or “m”)
Person ID: Unique Person ID assigned to this user’s generated Person object - see Family

History Information section for details (non-empty string)

Authorization Tokens
When a user logs in to your server, the login request sent from the client to the server must
include the user’s username and password. If login succeeds, your server should generate a
unique “authorization token” string for the user, and return it to the client. Subsequent requests

2

sent from the client to your server should include the auth token so your server can determine
which user is making the request. This allows non-login requests to be made without having to
include the user’s credentials, thus reducing the likelihood that a hacker will intercept them. For
this scheme to work, your server should store auth tokens in its database and record which user
each token belongs to. Also, to protect against the possibility that a hacker might intercept a
user’s auth token, it is important that each new login request generate and return a unique auth
token. It should also be possible for the same user to be logged in from multiple clients at the
same time, which means that the same user could have multiple active auth tokens
simultaneously.

An auth token should be included in the HTTP “Authorization” request header for all requests
that require an auth token.

Command-Line Arguments
Your server should accept the following command-line arguments:

1. Port number on which the server will accept client connections. This value is an integer
in the range 1-65535. EX: 8080

Family History Information
Your server should generate and store in its database family history information for each user.
This data should include two types of objects: Persons and Events. A user’s family history data
should include at least one Person object, which represents the user him or herself. Beyond the
user’s own Person object, there can be zero or more additional generations of data. When your
server is asked to generate family history data for a user, it will be told how many generations of
ancestor data to create (0 generations = the user, 1 generation = the user + parents, 2
generations = the user + parents + grandparents, etc.). Based on the requested number of
generations, you should fill out the user’s family tree with generated Person and Event data.

For each Person you should generate a set of Event objects that describe important events from
the person’s life. The types of events should be somewhat realistic and meet the following
criteria: each person, excluding the user, must have at least three events (birth, marriage,
and death) and the user needs to at least have a birth event. Parents should be born a
reasonable number of years before their children (at least 13 years), get married at a
reasonable age, and not die before their child is born. Also, females should not give birth at over
50 years old. Birth events need be first, and death events need to be last. No one should die at
over 120 years old. Each person in a couple has their own marriage event, but their two
marriage events need to have the same year and location. Event locations may be randomly
selected, or you can try to make them more realistic (e.g., many people live their lives in a
relatively small geographical area). Your code needs to account for any possible event type,
even if you yourself do not generate those events. For example you might only generate
events for Birth, Marriage, and Death. But you should be able to also to handle event types such
as Baptism, Christening, or any other data that may be loaded into your server.

3

The course web site provides some files you may use to help generate person, country, and city
names and locations.

Persons
Each generated Person should have the following properties:

Person ID: Unique identifier for this person (non-empty string)
Associated Username: User (Username) to which this person belongs
First Name: Person’s first name (non-empty string)
Last Name: Person’s last name (non-empty string)
Gender: Person’s gender (string: “f” or “m”)
Father ID: Person ID of person’s father (possibly null)
Mother ID: Person ID of person’s mother (possibly null)
Spouse ID: Person ID of person’s spouse (possibly null)

Events
Each generated Event should have the following properties:

Event ID: Unique identifier for this event (non-empty string)
Associated Username: User (Username) to which this person belongs
Person ID: ID of person to which this event belongs
Latitude: Latitude of event’s location
Longitude: Longitude of event’s location
Country: Country in which event occurred
City: City in which event occurred
EventType: Type of event (birth, baptism, christening, marriage, death, etc.)
Year: Year in which event occurred

Persistence
All of the data previously described should be stored in your server’s database so it is not lost in
case of a server reboot.

Web APIs
The primary function of the server is to publish a set of web APIs for use by the Family Map
client. Your server should implement each of the following web API operations.

Note that there is a “success” boolean in every Response Body. This is the key variable that you
can check to help you display the correct information after every API call. It does not matter if

4

your boolean variable is the primitive data type or the wrapper class, “Boolean”, provided by
java, both should work and display the same way.

Important Pass-off Requirements: With the new pass-off driver, you must pay extra attention
to the API and follow it exactly. Here are some things to keep in mind. Your generated JSon for
requests and results must match exactly as shown in the API, even the case of the letters.
Additionally, when a result contains an error message because something went wrong, that
message must contain the word “error” and your server must return 400’s for the response
code. Also, make sure you have the most up-to-date versions of the files in the “web” folder.

/user/register
URL Path: /user/register
Description: Creates a new user account, generates 4 generations of ancestor data for the new
user, logs the user in, and returns an auth token.
HTTP Method: POST
Auth Token Required: No
Request Body:
{

"userName": "susan", // Non-empty string
"password": "mysecret", // Non-empty string
"email": "susan@gmail.com", // Non-empty string
"firstName": "Susan", // Non-empty string
"lastName": "Ellis", // Non-empty string
 "gender": "f" // “f” or “m”

}
Errors: Request property missing or has invalid value, Username already taken by another user,
Internal server error
Success Response Body:
{

"authToken": "cf7a368f", // Non-empty auth token string
"userName": "susan", // User name passed in with request
"personID": "39f9fe46" // Non-empty string containing the Person ID of the

// user’s generated Person object
“success”:”true” // Boolean identifier

}
Error Response Body:
{

“message”: “Description of the error”
“success”:”false” // Boolean identifier

}

5

/user/login
URL Path: /user/login
Description: Logs in the user and returns an auth token.
HTTP Method: POST
Auth Token Required: No
Request Body:
{

"userName": "susan", // Non-empty string
"password": "mysecret" // Non-empty string

}
Errors: Request property missing or has invalid value, Internal server error
Success Response Body:
{

"authToken": "cf7a368f", // Non-empty auth token string
"userName": "susan", // User name passed in with request
"personID": "39f9fe46" // Non-empty string containing the Person ID of the

// user’s generated Person object
“success”:”true” // Boolean identifier

}
Error Response Body:
{

“message”: “Description of the error”
“success”:”false” // Boolean identifier

}

/clear
URL Path: /clear
Description: Deletes ALL data from the database, including user accounts, auth tokens, and
generated person and event data.
HTTP Method: POST
Auth Token Required: No
Request Body: None
Errors: Internal server error
Success Response Body:
{

“message”: “Clear succeeded.”
“success”:”true” // Boolean identifier

}
Error Response Body:
{

“message”: “Description of the error”

6

“success”:”false” // Boolean identifier
}

/fill/[username]/{generations}
URL Path: /fill/[username]/{generations}
Example: /fill/susan/3
Description: Populates the server's database with generated data for the specified user name.
The required "username" parameter must be a user already registered with the server. If there is
any data in the database already associated with the given user name, it is deleted. The
optional “generations” parameter lets the caller specify the number of generations of ancestors
to be generated, and must be a non-negative integer (the default is 4, which results in 31 new
persons each with associated events).
HTTP Method: POST
Auth Token Required: No
Request Body: None
Errors: Invalid username or generations parameter, Internal server error
Success Response Body:
{

“message”: “Successfully added X persons and Y events to the database.”
“success”:”true” // Boolean identifier

}
Error Response Body:
{

“message”: “Description of the error”
“success”:”false” // Boolean identifier

}

/load
URL Path: /load
Description: Clears all data from the database (just like the /clear API), and then loads the
posted user, person, and event data into the database.
HTTP Method: POST
Auth Token Required: No
Request Body: The “users” property in the request body contains an array of users to be
created. The “persons” and “events” properties contain family history information for these
users. The objects contained in the “persons” and “events” arrays should be added to the
server’s database. The objects in the “users” array have the same format as those passed to
the /user/register API with the addition of the personID. The objects in the “persons” array have
the same format as those returned by the /person/[personID] API. The objects in the “events”
array have the same format as those returned by the /event/[eventID] API.
{

“users”: [/* Array of User objects */],

7

“persons”: [/* Array of Person objects */],
“events”: [/* Array of Event objects */]

}
Errors: Invalid request data (missing values, invalid values, etc.), Internal server error
Success Response Body:
{

“message”: “Successfully added X users, Y persons, and Z events to the database.”
“success”:”true” // Boolean identifier

}
Error Response Body:
{

“message”: “Description of the error”
“success”:”false” // Boolean identifier

}

/person/[personID]
URL Path: /person/[personID]
Example: /person/7255e93e
Description: Returns the single Person object with the specified ID.
HTTP Method: GET
Auth Token Required: Yes
Request Body: None
Errors: Invalid auth token, Invalid personID parameter, Requested person does not belong to
this user, Internal server error
Success Response Body:
{

"associatedUsername": "susan", // Name of user account this person belongs to
"personID": "7255e93e", // Person’s unique ID
"firstName": "Stuart", // Person’s first name
"lastName": "Klocke", // Person’s last name
"gender": "m", // Person’s gender (“m” or “f”)
“fatherID”: “7255e93e” // ID of person’s father [OPTIONAL, can be

missing]
“motherID”: “d3gz214j” // ID of person’s mother [OPTIONAL, can be missing]
"spouseID":"f42126c8" // ID of person’s spouse [OPTIONAL, can be missing]
“success”:”true” // Boolean identifier

}
Error Response Body:
{

“message”: “Description of the error”
“success”:”false” // Boolean identifier

}

8

/person
URL Path: /person
Description: Returns ALL family members of the current user. The current user is
determined from the provided auth token.
HTTP Method: GET
Auth Token Required: Yes
Request Body: None
Errors: Invalid auth token, Internal server error
Success Response Body: The response body returns a JSON object with a “data” attribute that
contains an array of Person objects. Each Person object has the same format as described in
previous section on the /person/[personID] API.
{

"data": [/* Array of Person objects */]
“success”:”true” // Boolean identifier

}
Error Response Body:
{

“message”: “Description of the error”
“success”:”false” // Boolean identifier

}

/event/[eventID]
URL Path: /event/[eventID]
Example: /event/251837d7
Description: Returns the single Event object with the specified ID.
HTTP Method: GET
Auth Token Required: Yes
Request Body: None
Errors: Invalid auth token, Invalid eventID parameter, Requested event does not belong to this
user, Internal server error
Success Response Body:
{

"associatedUsername": "susan" // Username of user account this event belongs to
// (non-empty string)

"eventID": "251837d7", // Event’s unique ID (non-empty string)
"personID": "7255e93e", // ID of the person this event belongs to (non-empty string)
"latitude": 65.6833, // Latitude of the event’s location (number)
"longitude": -17.9, // Longitude of the event’s location (number)
"country": "Iceland", // Name of country where event occurred (non-empty

// string)

9

"city": "Akureyri", // Name of city where event occurred (non-empty string)
"eventType": "birth", // Type of event (“birth”, “baptism”, etc.) (non-empty string)
"year": 1912, // Year the event occurred (integer)
“success”:”true” // Boolean identifier

}
Error Response Body:
{

“message”: “Description of the error”
“success”:”false” // Boolean identifier

}

/event
URL Path: /event
Description: Returns ALL events for ALL family members of the current user. The current
user is determined from the provided auth token.
HTTP Method: GET
Auth Token Required: Yes
Request Body: None
Errors: Invalid auth token, Internal server error
Success Response Body: The response body returns a JSON object with a “data” attribute that
contains an array of Event objects. Each Event object has the same format as described in
previous section on the /event/[eventID] API.
{

"data": [/* Array of Event objects */]
“success”:”true” // Boolean identifier

}
Error Response Body:
{

“message”: “Description of the error”
“success”:”false” // Boolean identifier

}

Web API Test Page
To allow interactive testing of your server, we have created a Web API Test Page that lets you:

1. Interactively construct a Web API call
2. Send the Web API call to the server
3. See the output returned by the server for the call

This will be a useful development and testing tool for you, and will also be used by the TAs to
pass-off your server.

10

The “home page” for your server should be the Web API Test Page. This means that when a
user points a web browser at your server (e.g., http://localhost:8080/ OR
http://localhost:8080/index.html), your server should return the Web API Test Page, thus
allowing the user to interactively test your server. Your server’s Web API Test Page should be
fully-functional (including images and styling).

All of the HTML, CSS, and image files that implement the Web API Test Page are provided on
the course web site. These files should be placed in a folder within your server project. When
your server receives an HTTP GET request asking for one of these files (based on the request
URL), it should return the contents of the requested file in the body of the HTTP response.
Doing this will allow a user to “browse” your server’s home page.

The end result will be that your server will perform two functions at once:

1. Service Web API requests from clients
2. Act like a normal web server by serving up its home page (the Web API Test Page)

In web applications, it is typical for a server to do both of these things.

Automated Tests
Use the JUnit testing framework to implement automated unit tests for your Data Access and
Service classes.

You are expected to have at least 2 test cases for each public method found in these classes,
typically one positive (or passing) and one negative (or failing). Some methods might not have
the possibility of failing; in this case you should have 2 positive test cases. One of these positive
test cases should test the main usage scenario (sometimes called the “happy path”). The other
positive test case should test an alternative scenario or case. Review the following Q&A for
more details.

Q: How many test cases do I need?
A: You need at least 2 test cases per public method found in your Service and DAO classes.

Q: Can I do more?
A: Absolutely. You may find doing more test cases to be helpful as a debugging tool.

Q: How much do I need to do for each test case?
A: Each test case should run through a complete execution of the method that it is testing and
then use assertions to ensure that the method ran as expected. Most (if not all) test cases will
involve multiple assertions.

Q: What does a negative (or failing) test case look like? Is it okay if my code crashes?

11

A: Your code should not crash. If your method is designed to throw a certain exception (perhaps
a “UserAlreadyExistsException”) as part of its error reporting, that is okay. Just make sure to
catch it in your test case. Some examples of negative test cases include trying to log in with a
bad password, trying to find a personID that does not exist, or passing invalid parameters. This
is just the beginning though. We want you to think about the possible weak points in your code,
and try to find them. Make them as unique as possible; don’t just pass null into the parameters
for every negative case. You can still lose points for bad test cases.

Q: Is it okay that my test cases depend on methods besides the one it tests?
A: Yes. We wish to avoid this where possible because it makes debugging easier when the test
only relies on one method, but it’s fine to have to call a getter in order to check that your add
method worked or to call the add method in order to have something to get. Just remember that
you’re stress-testing the method that the test case is for, not the methods it uses to ensure
correct operation.

Design
Two keys to succeeding on a large project like this are: 1) get started early, and 2) make a plan
that breaks down the project into smaller pieces, and shows how those pieces will eventually fit
together to make a working program. To help you do this effectively, you are required to submit
a preliminary design for your project. Your design should include two parts:

1. Database Schema: Make a text file that contains all of the SQL CREATE TABLE statements
needed to create all of the tables in your database schema.
2. Class Documentation: Create stub classes for your Model classes, Data Access classes,
Service classes, and Request and Result classes. Document them with Javadoc comments.
Run Javadoc to generate HTML documentation.

Your design should be submitted electronically. To do so, create a web site containing: 1) the
text file with your SQL CREATE TABLE statements, and 2) a directory containing the files
generated by Javadoc. Send an email to the TAs containing: 1) your name, 2) the URL of your
SQL text file, 3) the URL of the index.html file for your Javadoc documentation, and 4) the name
of your professor. The TAs will click on these URLs to view your design document. It is your
responsibility to ensure that this works properly. If it does not, the TAs will be unable to grade
your work.

(You might not be aware of this, but any files that you place in the public_html directory of your
CS home directory are automatically published on the web. This allows you to easily create your
own personal website. For example, if a user has the CS login name fred, the URL for his web
site is http://students.cs.byu.edu/~fred/. If he were to place a file named database.sql in his
public_html directory, it would be accessible on the web at the URL

12

http://students.cs.byu.edu/~fred/database.sql. You may use your CS website to submit your
design document, or some other web site that you have.)

Source Code/Test Case Evaluation
After you pass off your project with a TA, you should immediately submit your project source
code for grading. Your grade on the project will be determined by the date you submitted your
source code, not the date that you passed off. If we never receive your source code, you will
not receive credit for the assignment. Here are the instructions for submitting your project
source code:

1. In Android Studio, execute “Build -> Clean Project” (if this option is not available, you
may skip this step).

2. Create a ZIP file containing ALL of your project’s files (not just the Java files)
3. The name of the ZIP file should be your NetID. For example, if your NetID is “bob123”,

the name of your zip file should be “bob123.zip”.
4. Submit your ZIP file through Learning Suite

To demonstrate that your test cases execute successfully, you should run your unit tests inside
Android Studio, and make a screenshot of the successful test results displayed by Android
Studio. Submit your screenshot through Learning Suite. This screenshot is submitted separately
from your code ZIP file (i.e., they are different assignments in Learning Suite).

The following criteria will be used to evaluate your source code:

❏ (25%) Effective class, method, and variable names
❏ (30%) Effective decomposition of classes and methods
❏ (30%) Code layout is readable and consistent
❏ (15%) Effective organization of classes into Java packages

Grading
Your grade on this project will consist of the following components:

1. Design (quality of your preliminary design)
2. Functionality (how well your server works)
3. Test Case Quality (quality of your test cases, do they compile and run?, etc.)
4. Source Code Quality (quality of your source code)

See the course policies page on the CS 240 website for details on how much each of these
components counts toward your overall course grade.

13

Additionally, students will have up to 5 passoff attempts for the Server before points will be
deducted. This is an effort to encourage students to test their code before attempting to passoff.
Click here for a general guideline of what the TA’s will be testing in their passoff; use it as a
starting point. You will want to test these suggestions extensively. You can assume that we will
always give valid formatting to your web client. After your 5th failed passoff attempt you will lose
1% per attempt from your FMS Program grade.

14

https://students.cs.byu.edu/~cs240ta/fall2018/projects/family-map-server/passoff-tips.txt

