
White Box Testing
Sources:

Code Complete, 2nd Ed., Steve McConnell
Software Engineering, 5th Ed., Roger Pressman

White Box Testing

• From a testing perspective, looking at the class's internal
implementation, in addition to its inputs and expected outputs, enables
you to test it more thoroughly

• Testing that is based both on expected external behavior and
knowledge of internal implementation is called "white box testing"

White Box Testing

• White box testing is primarily used during unit testing

• Unit testing is usually performed by the engineer who wrote the code

• In some cases an independent tester might do unit testing

Complete Path Coverage
• Test ALL possible paths through a subroutine

• Example What test cases are needed to achieve complete path

coverage of this subroutine?

• Some paths may be impossible to achieve. Skip those paths

• Often there are too many paths to test them all, especially if there are
loops in the code. In this case, we use less complete approaches:
– Line coverage
– Branch coverage
– Condition testing
– Loop testing

Line coverage
• At a minimum, every line of code should be executed by at least one

test case

• Example What test cases are needed to achieve complete line coverage
of this subroutine?

• Developers tend to significantly overestimate the level of line coverage
achieved by their tests

• Coverage tools (like Cobertura) are important for getting a realistic
sense of how completely your tests cover the code

• Complete line coverage is necessary, but not sufficient

Branch coverage
• Similar to line coverage, but stronger

• Test every branch in all possible directions

• If statements

– test both positive and negative directions

• Switch statements
– test every branch
– If no default case, test a value that doesn't match any case

• Loop statements

– test for both 0 and > 0 iterations

Branch coverage
• Example What test cases are needed to achieve complete branch

coverage of this subroutine?

• Why isn't branch coverage the same thing as line coverage?

Branch coverage
• Example What test cases are needed to achieve complete branch

coverage of this subroutine?

• Why isn't branch coverage the same thing as code coverage?
– Consider an if with no else, or a switch with no default case
– Line coverage can be achieved without achieving branch coverage

Complete Condition testing
• For each compound condition, C

• Find the simple sub-expressions that make up C

– Simple pieces with no ANDs or ORs
– Suppose there are n of them

• Create a test case for all 2n T/F combinations of the simple sub-

expressions
– If (!done && (value < 100 || c == 'X')) …
– Simple sub-expressions

• !done, value < 100, c == 'X'
• n = 3
• Need 8 test cases to test all possibilities

Complete Condition testing
• Use a “truth table” to make sure

that all possible combinations
are covered by your test cases

• Doing this kind of exhaustive
condition testing everywhere is
usually not feasible

• Some combinations might be
impossible to achieve (omit
these cases, since they are
impossible)

!done value < 100 c == ‘X’

Case 1: False False False

Case 2: True False False

Case 3: False True False

Case 4: False False True

Case 5: True True False

Case 6: True False True

Case 7: False True True

Case 8: True True True

Partial Condition Testing
• A partial, more feasible approach

• For each condition, C, test the True and False branches of C and every sub-

expression (simple or not) within C, but not all possible combinations

– If (!done && (value < 100 || c == 'X')) …

• !done, both T and F
• value < 100, both T and F
• c == 'X', both T and F
• (value < 100 || c == 'X'), both T and F
• (!done && (value < 100 || c == 'X')), both T and F

– One test case may cover several of these, thus reducing the number of

required test cases

Partial Condition testing
• This is similar to what Cobertura calls branch coverage, except that

they only consider the True and False cases of simple sub-expressions

• The test cases for a particular sub-expression must actually execute
that sub-expression
– If (!done && (value < 100 || c == 'X')) …
– Think about short-circuiting
– Above, if done is T, the rest of the expression doesn't matter

anyway
– The test cases for value < 100 would need to set done to F
– The test cases for c == 'X' would need to set done to F and value

>= 100

// Compute Net Pay
totalWithholdings = 0;

for (id = 0; id < numEmployees; ++id) {

 // compute social security withholding, if below the maximum
 if (m_employee[id].governmentRetirementWithheld < MAX_GOVT_RETIREMENT) {
 governmentRetirement = ComputeGovernmentRetirement(m_employee[id]);
 }

 // set default to no retirement contribution
 companyRetirement = 0;

 // determine discretionary employee retirement contribution
 if (m_employee[id].WantsRetirement && EligibleForRetirement(m_employee[id])) {
 companyRetirement = GetRetirement(m_employee[id]);
 }

 grossPay = ComputeGrossPay(m_employee[id]);

 // determine IRA contribution
 personalRetirement = 0;
 if (EligibleForPersonalRetirement(m_employee[id]) {
 personalRetirement = PersonalRetirementContribution(m_employee[id], companyRetirement, grossPay);
 }

 // make weekly paycheck
 withholding = ComputeWithholding(m_employee[id]);
 netPay = grossPay - withholding - companyRetirement - governmentRetirement - personalRetirement;
 PayEmployee(m_employee[id], netPay);

 // add this employee's paycheck to total for accounting
 totalWithholdings += withholding;
 totalGovernmentRetirement += governmentRetirement;
 totalRetirement += companyRetirement;
}

SavePayRecords(totalWithholdings, totalGovernmentRetirement, totalRetirement);

What test cases do we need to achieve
Line coverage?
Branch coverage?
Complete condition testing?
Partial condition testing?

Loop Testing

• Design test cases based on looping structure of the routine

• Testing loops
– Skip loop entirely
– One pass
– Two passes
– N-1, N, and N+1 passes [N is the maximum number of passes]
– M passes, where 2 < M < N-1

Loop Testing
int ReadLine(istream & is, char buf[], int bufLen) {
 int count = 0;
 while (count < bufLen) {
 int c = is.get();
 if (c != -1 && c != '\n')
 buf[count++] = (char)c;
 else
 break;
 }
 return count;
}

What test cases do we need?

1) Skip loop entirely:
a. bufLen == 0

2) Exactly one pass:
a. line of length 1 (including the '\n') OR bufLen == 1

3) Exactly two passes:
a. line of length 2 OR bufLen == 2

4) N-1, N, and N+1 passes:
a. lines of length bufLen-1, bufLen, and bufLen+1

5) M passes, where 2 < M < N-1
a. line of length bufLen / 2

Data Flow Testing
• The techniques discussed so far have all been based on "control flow"

• You can also design test cases based on "data flow“ (i.e., how data flows

through the code)

• Some statements "define" a variable’s value (i.e., a “variable definition”)
– Variable declarations with initial values
– Assignments
– Incoming parameter values

• Some statements "use" variable’s value (i.e., a “variable use”)

– Expressions on right side of assignment
– Boolean condition expressions
– Parameter expressions

Data Flow Testing

• For every "use" of a variable

– Determine all possible places in the program where the variable
could have been defined (i.e., given its most recent value)

– Create a test case for each possible (Definition, Use) pair

Data Flow Testing

If (Condition 1) {
 x = a;
}
Else {
 x = b;
}

If (Condition 2) {
 y = x + 1;
}
Else {
 y = x – 1;
}

What test cases do we need?

1. (x = a, y = x + 1)
2. (x = b, y = x + 1)
3. (x = a, y = x – 1)
4. (x = b, y = x – 1)

Definitions: 1) x = a; 2) x = b;
Uses: 1) y = x + 1; 2) y = x – 1;

Data Flow Testing

• Example Use data flow testing to design a set of test cases for this
subroutine.

Relational condition testing

• Testing relational sub-expressions
• (E1 op E2)
• ==, !=, <, <=, >, >=

• Three test cases to try:

– Test E1 == E2
– Test E1 slightly bigger than E2
– Test E1 slightly smaller than E2

Internal Boundary Testing

• Look for boundary conditions in the code, and create test cases for
boundary – 1, boundary, boundary + 1

void sort(int[] data) {
 if (data.length < 30)
 insertionSort(data);
 else
 quickSort(data);
}

Internal Boundary Testing
const int CHUNK_SIZE = 100;

char * ReadLine(istream & is) {
 int c = is.get();
 if (c == -1) {
 return 0;
 }

 char * buf = new char[CHUNK_SIZE];
 int bufSize = CHUNK_SIZE;
 int strSize = 0;

 while (c != '\n' && c != -1) {
 if (strSize == bufSize - 1) {
 buf = Grow(buf, bufSize);
 bufSize += CHUNK_SIZE;
 }

 buf[strSize++] = (char)c;

 c = is.get();
 }

 buf[strSize] = '\0';

 return buf;
}

Lines of length 99, 100, 101

What test cases do we need?

Data Type Errors

• Scan the code for data type-related errors such as:
– Arithmetic overflow

• If two numbers are multiplied together, what happens if they're
both large positive values? Large negative values?

• Is divide-by-zero possible?
– Other kinds of overflow

• If two strings are concatenated together, what happens if
they're both unusually long

– Casting a larger numeric data type to a smaller one
• short s = (short)x; // x is an int

– Combined signed/unsigned arithmetic

Built-in Assumptions

• Scan the code for built-in assumptions that may be incorrect
– Year begins with 19
– Age is less than 100
– String is non-empty
– Protocol in URL is all lower-case

• What about "hTtP://..." or FTP://...?

Limitations of white box testing
• Whatever blind spots you had when writing the code will carry over into your white box

testing
– Testing by independent test group is also necessary

• Developers often test with the intent to prove that the code works rather than proving

that it doesn't work

• Developers tend to skip the more sophisticated types of white box tests (e.g., condition
testing, data flow testing, loop testing, etc.), relying mostly on line coverage

• White box testing focuses on testing the code that's there. If something is missing (e.g.,
you forgot to handle a particular case), white box testing might not help you.

• There are many kinds of errors that white box testing won't find
– Timing and concurrency bugs
– Performance problems
– Usability problems
– Etc.

	White Box Testing
	White Box Testing
	White Box Testing
	Complete Path Coverage
	Line coverage
	Branch coverage
	Branch coverage
	Branch coverage
	Complete Condition testing
	Complete Condition testing
	Partial Condition Testing
	Partial Condition testing
	What test cases do we need to achieve
	Loop Testing
	Loop Testing
	Data Flow Testing
	Data Flow Testing
	Data Flow Testing
	Data Flow Testing
	Relational condition testing
	Internal Boundary Testing
	Internal Boundary Testing
	Data Type Errors
	Built-in Assumptions
	Limitations of white box testing

