
Black Box Testing
Sources:

Code Complete, 2nd Ed., Steve McConnell
Software Engineering, 5th Ed., Roger Pressman

Testing Computer Software, 2nd Ed., Cem Kaner, et. Al.

Black Box Testing
• Testing software against a specification of its external behavior without

knowledge of internal implementation details
– Can be applied to software “units” (e.g., classes) or to entire

programs
– External behavior is defined in API docs, Functional specs,

Requirements specs, etc.

• Because black box testing purposely disregards the program's control
structure, attention is focused primarily on the information domain (i.e.,
data that goes in, data that comes out)

• The Goal: Derive sets of input conditions (test cases) that fully exercise
the external functionality

Black Box Testing
• Black box testing tends to find different kinds of errors than white box testing

– Missing functions
– Usability problems
– Performance problems
– Concurrency and timing errors
– Initialization and termination errors
– Etc.

• Unlike white box testing, black box testing tends to be applied later in the

development process

• Black Box Testing Example

The Information Domain:
inputs and outputs

• Inputs
– Individual input values

• Try many different values for each individual input

– Combinations of inputs
• Individual inputs are not independent from each other
• Programs process multiple input values together, not just one at

a time
• Try many different combinations of inputs in order to achieve

good coverage of the input domain

– Ordering and Timing of inputs
• In addition to the particular combination of input values chosen,

the ordering and timing of the inputs can also make a difference

The Information Domain:
inputs and outputs

• Defining the input domain
– Boolean value

• T or F
– Numeric value in a particular range

• 99 <= N <= 99
• Integer, Floating point

– One of a fixed set of enumerated values
• {Jan, Feb, Mar, …}
• {Visa, MasterCard, Discover, …}

– Formatted strings
• Phone numbers
• File names
• URLs
• Credit card numbers
• Regular expressions

Equivalence Partitioning

• Typically the universe of all possible test cases is so large that you
cannot try them all

• You have to select a relatively small number of test cases to actually
run

• Which test cases should you choose?

• Equivalence partitioning helps answer this question

Equivalence Partitioning

• Partition the test cases into "equivalence classes"

• Each equivalence class contains a set of "equivalent" test cases

• Two test cases are considered to be equivalent if we expect the
program to process them both in the same way (i.e., follow the same
path through the code)

• If you expect the program to process two test cases in the same way,
only test one of them, thus reducing the number of test cases you have
to run

Equivalence Partitioning

• First-level partitioning: Valid vs. Invalid test cases

Valid Invalid

Equivalence Partitioning

• Partition valid and invalid test cases into equivalence classes

Equivalence Partitioning

• Create a test case for at least one value from each equivalence class

Equivalence Partitioning

• When designing test cases, you may use different definitions of
“equivalence”, each of which will partition the test case space
differently
– Example: int Add(n1, n2, n3, …)

• Equivalence Definition 1: partition test cases by the number
of inputs (1, 2, 3, etc.)

• Equivalence Definition 2: partition test cases by the number
signs they contain (positive, negative, both)

• Equivalence Definition 3: partition test cases by the
magnitude of operands (large numbers, small numbers, both)

• Etc.

Equivalence Partitioning

• When designing test cases, you may use different definitions of
“equivalence”, each of which will partition the test case space
differently
– Example: string Fetch(URL)

• Equivalence Definition 1: partition test cases by URL
protocol (“http”, “https”, “ftp”, “file”, etc.)

• Equivalence Definition 2: partition test cases by type of file
being retrieved (HTML, GIF, JPEG, Plain Text, etc.)

• Equivalence Definition 3: partition test cases by length of
URL (very short, short, medium, long, very long, etc.)

• Etc.

Equivalence Partitioning

• If an oracle is available, the test values in each equivalence class can
be randomly generated. This is more useful than always testing the
same static values.
– Oracle: something that can tell you whether a test passed or failed

• Test multiple values in each equivalence class. Often you’re not sure

if you have defined the equivalence classes correctly or completely,
and testing multiple values in each class is more thorough than
relying on a single value.

Equivalence Partitioning - examples

Input Valid Equivalence Classes Invalid Equivalence Classes

A integer N such that:
-99 <= N <= 99 ? ?

Phone Number
Area code: [200, 999]
Prefix: (200, 999]
Suffix: Any 4 digits

?

?

Equivalence Partitioning - examples

Input Valid Equivalence Classes Invalid Equivalence Classes

A integer N such that:
-99 <= N <= 99

[-99, -10]
[-9, -1]
0
[1, 9]
[10, 99]

?
Phone Number
Area code: [200, 999]
Prefix: (200, 999]
Suffix: Any 4 digits

?

?

Equivalence Partitioning - examples

Input Valid Equivalence Classes Invalid Equivalence Classes

A integer N such that:
-99 <= N <= 99

[-99, -10]
[-9, -1]
0
[1, 9]
[10, 99]

< -99
> 99
Malformed numbers
{12-, 1-2-3, …}
Non-numeric strings
{junk, 1E2, $13}
Empty value

Phone Number
Area code: [200, 999]
Prefix: (200, 999]
Suffix: Any 4 digits

? ?

Equivalence Partitioning - examples

Input Valid Equivalence Classes Invalid Equivalence Classes

A integer N such that:
-99 <= N <= 99

[-99, -10]
[-9, -1]
0
[1, 9]
[10, 99]

< -99
> 99
Malformed numbers
{12-, 1-2-3, …}
Non-numeric strings
{junk, 1E2, $13}
Empty value

Phone Number
Area code: [200, 999]
Prefix: (200, 999]
Suffix: Any 4 digits

555-5555
(555)555-5555
555-555-5555
200 <= Area code <= 999
200 < Prefix <= 999

?

Equivalence Partitioning - examples

Input Valid Equivalence Classes Invalid Equivalence Classes

A integer N such that:
-99 <= N <= 99

[-99, -10]
[-9, -1]
0
[1, 9]
[10, 99]

< -99
> 99
Malformed numbers
{12-, 1-2-3, …}
Non-numeric strings
{junk, 1E2, $13}
Empty value

Phone Number
Area code: [200, 999]
Prefix: (200, 999]
Suffix: Any 4 digits

555-5555
(555)555-5555
555-555-5555
200 <= Area code <= 999
200 < Prefix <= 999

Invalid format 5555555,
(555)(555)5555, etc.
Area code < 200 or > 999
Area code with non-numeric
characters
Similar for Prefix and Suffix

Boundary Value Analysis
• When choosing values from an equivalence class to test, use the values that are

most likely to cause the program to fail

• Errors tend to occur at the boundaries of equivalence classes rather than at the
"center"
– If (200 < areaCode && areaCode < 999) { // valid area code }
– Wrong!
– If (200 <= areaCode && areaCode <= 999) { // valid area code }
– Testing area codes 200 and 999 would catch this error, but a center value

like 770 would not

• In addition to testing center values, we should also test boundary values
– Right on a boundary
– Very close to a boundary on either side

Boundary Value Analysis

• Create test cases to test boundaries of equivalence classes

Boundary Value Analysis - examples

Input Boundary Cases

A number N such that:
-99 <= N <= 99 ?
Phone Number
Area code: [200, 999]
Prefix: (200, 999]
Suffix: Any 4 digits

?

Boundary Value Analysis - examples

Input Boundary Cases

A number N such that:
-99 <= N <= 99

-100, -99, -98
-10, -9
-1, 0, 1
9, 10
98, 99, 100

Phone Number
Area code: [200, 999]
Prefix: (200, 999]
Suffix: Any 4 digits

?

Boundary Value Analysis - examples

Input Boundary Cases

A number N such that:
-99 <= N <= 99

-100, -99, -98
-10, -9
-1, 0, 1
9, 10
98, 99, 100

Phone Number
Area code: [200, 999]
Prefix: (200, 999]
Suffix: Any 4 digits

Area code: 199, 200, 201
Area code: 998, 999, 1000
Prefix: 200, 199, 198
Prefix: 998, 999, 1000
Suffix: 3 digits, 5 digits

Boundary Value Analysis - examples

• Numeric values are often entered as strings which are then converted to
numbers internally [int x = atoi(str);]

• This conversion requires the program to distinguish between digits and
non-digits

• A boundary case to consider: Will the program accept / and : as digits?

/ 0 1 2 3 4 5 6 7 8 9 :

47 48 49 50 51 52 53 54 55 56 57 58

Char
ASCII

Mainstream usage testing

• Don't get so wrapped up in testing boundary cases that you neglect to
test "normal" input values
– Values that users would typically enter during mainstream usage

Black Box Testing Examples

• Triangle Classification
• Next Date
• Substring Search

Ad Hoc Exploratory Testing
(Error Guessing)

• Based on intuition, guess what kinds of inputs might cause the
program to fail

• Create some test cases based on your guesses

• Intuition will often lead you toward boundary cases, but not always

• Some special cases aren't boundary values, but are mishandled by
many programs
– Try exiting the program while it's still starting up
– Try loading a corrupted file
– Try strange but legal URLs: hTtP://Www.bYu.EDU/

Comparison Testing
• Also called Back-to-Back testing

• If you have multiple implementations of the same functionality, you can run

test inputs through both implementations, and compare the results for equality

• Why would you have access to multiple implementations?
– Safety-critical systems sometimes use multiple, independent

implementations of critical modules to ensure the accuracy of results
– You might use a competitor's product, or an earlier version of your own,

as the second implementation
– You might write a software simulation of a new chip that serves as the

specification to the hardware designers. After building the chip, you
could compare the results computed by the chip hardware with the results
computed by the software simulator

• Inputs may be randomly generated or designed manually

Testing for race conditions and other
timing dependencies

• Many systems perform multiple concurrent activities
– Operating systems manage concurrent programs, interrupts, etc.
– Servers service many clients simultaneously
– Applications let users perform multiple concurrent actions

• Test a variety of different concurrency scenarios, focusing on activities that are

likely to share resources (and therefore conflict)

• "Race conditions" are bugs that occur only when concurrent activities
interleave in particular ways, thus making them difficult to reproduce

• Test on hardware of various speeds to ensure that your system works well on
both slower and faster machines

Performance Testing

• Measure the system's performance
– Running times of various tasks
– Memory usage, including memory leaks
– Network usage (Does it consume too much bandwidth? Does it

open too many connections?)
– Disk usage (Is the disk footprint reasonable? Does it clean up

temporary files properly?)
– Process/thread priorities (Does it play well with other applications,

or does it hog the whole machine?)

Limit Testing

• Test the system at the limits of normal use

• Test every limit on the program's behavior defined in the requirements
– Maximum number of concurrent users or connections
– Maximum number of open files
– Maximum request size
– Maximum file size
– Etc.

• What happens when you go slightly beyond the specified limits?

– Does the system's performance degrade dramatically, or gracefully?

Stress Testing
• Test the system under extreme conditions (i.e., beyond the limits of normal use)

• Create test cases that demand resources in abnormal quantity, frequency, or

volume
– Low memory conditions
– Disk faults (read/write failures, full disk, file corruption, etc.)
– Network faults
– Unusually high number of requests
– Unusually large requests or files
– Unusually high data rates (what happens if the network suddenly becomes

ten times faster?)

• Even if the system doesn't need to work in such extreme conditions, stress testing
is an excellent way to find bugs

Random Testing
• Randomly generate test inputs

– Could be based on some statistical model

• How do you tell if the test case succeeded?
– Where do the expected results come from?
– Some type of “oracle” is needed

• Expected results could be calculated manually

– Possible, but lots of work

• Automated oracles can often be created to measure characteristics of the system
– Performance (memory usage, bandwidth, running times, etc.)
– Did the system crash?
– Maximum and average user response time under simulated user load

Security Testing

• Any system that manages sensitive information or performs sensitive
functions may become a target for intrusion (i.e., hackers)

• How feasible is it to break into the system?
• Learn the techniques used by hackers
• Try whatever attacks you can think of
• Hire a security expert to break into the system

• If somebody broke in, what damage could they do?
• If an authorized user became disgruntled, what damage could they do?

Usability Testing

• Is the user interface intuitive, easy to use, organized, logical?
• Does it frustrate users?
• Are common tasks simple to do?
• Does it conform to platform-specific conventions?

• Get real users to sit down and use the software to perform some tasks
• Watch them performing the tasks, noting things that seem to give them

trouble
• Get their feedback on the user interface and any suggested

improvements

• Report bugs for any problems encountered

Recovery Testing

• Try turning the power off or otherwise crashing the program at arbitrary
points during its execution
– Does the program come back up correctly when you restart it?
– Was the program’s persistent data corrupted (files, databases, etc.)?
– Was the extent of user data loss within acceptable limits?

• Can the program recover if its configuration files have been corrupted or

deleted?

• What about hardware failures? Does the system need to keep working
when its hardware fails? If so, verify that it does so.

Configuration Testing

• Test on all required hardware configurations
– CPU, memory, disk, graphics card, network card, etc.

• Test on all required operating systems and versions thereof

– Virtualization technologies such as VMWare and Virtual PC are
very helpful for this

• Test as many Hardware/OS combinations as you can

• Test installation programs and procedures on all relevant

configurations

Compatibility Testing

• Test to make sure the program is compatible with other programs it is
supposed to work with

• Ex: Can Word 12.0 load files created with Word 11.0?
• Ex: "Save As… Word, Word Perfect, PDF, HTML, Plain Text"
• Ex: "This program is compatible with Internet Explorer and Firefox"

• Test all compatibility requirements

Documentation Testing

• Test all instructions given in the documentation to ensure their
completeness and accuracy

• For example, “How To ...” instructions are sometimes not updated to
reflect changes in the user interface

• Test user documentation on real users to ensure it is clear and complete

	Black Box Testing
	Black Box Testing
	Black Box Testing
	The Information Domain: �inputs and outputs
	The Information Domain: �inputs and outputs
	Equivalence Partitioning
	Equivalence Partitioning
	Equivalence Partitioning
	Equivalence Partitioning
	Equivalence Partitioning
	Equivalence Partitioning
	Equivalence Partitioning
	Equivalence Partitioning
	Equivalence Partitioning - examples
	Equivalence Partitioning - examples
	Equivalence Partitioning - examples
	Equivalence Partitioning - examples
	Equivalence Partitioning - examples
	Boundary Value Analysis
	Boundary Value Analysis
	Boundary Value Analysis - examples
	Boundary Value Analysis - examples
	Boundary Value Analysis - examples
	Boundary Value Analysis - examples
	Mainstream usage testing
	Black Box Testing Examples
	Ad Hoc Exploratory Testing�(Error Guessing)
	Comparison Testing
	Testing for race conditions and other timing dependencies
	Performance Testing
	Limit Testing
	Stress Testing
	Random Testing
	Security Testing
	Usability Testing
	Recovery Testing
	Configuration Testing
	Compatibility Testing
	Documentation Testing

