
Introduction to Software Testing 



Software Testing 
 
• Testing is the process of detecting errors by running the actual software and 

verifying that it works as it should 
– Test cases, Expected results, Actual results 
 

• Testing is by far the most popular QA activity (but not the most effective) 
 

• Technical reviews (design reviews, code reviews, etc.) are cheaper and more 
effective than testing, but are often not done 
 

• Research has shown that all forms of testing combined usually find less than 
60% of the errors present 



Software Testing 
• There are many different types of testing.  Three of the most important are: 

 
– Unit Testing: testing individual modules (e.g., classes) to make sure 

they work in isolation before combining them with the rest of the 
system 
 

– Integration Testing: testing the combination of multiple modules after 
they have been integrated together 

• If the individual modules work in isolation, can there possibly be 
defects in their combination?  

• YES!  The interactions between the modules can contain defects 
 

– System Testing: testing done on the entire program, after it is 
completely integrated 



Software Testing 
• Exhaustively testing software is not feasible 

 
– The number of possible input combinations is effectively infinite  
– The number of unique paths through the code is effectively infinite 
– You might not live long enough to exhaustively test a non-trivial software system 

 
• We must do partial testing because we only have enough resources (time and money) to 

run relatively few test cases 
 

• Partial testing can never prove the absence of defects 
 

– If the system passes all your test cases, there could still be defects, you just need 
more or better test cases to find them 

 



Software Testing 
 

• Effective testing lies in intelligently choosing the relatively few test cases that will 
actually be executed 

 
– Test all requirements and features defined in the requirements spec. and functional 

spec. 
 

– Test cases should not be redundant (i.e., each one should follow a different path 
through the code) 
 

– Focus on scenarios that users are likely to encounter in practice 
 

– Analyze the program’s design and code to find potential weak areas 
 

– Analyze all points at which data enters the system and look for ways to attack it 
 
 

 
 
 
 
 

 



Software Testing 

• Approaches to test case design are generally divided into two broad categories: 
Black Box Testing and White Box Testing 
 

• Black Box Testing 
– The tester has limited knowledge of the inner workings of the item being 

tested 
– Test cases are based on the specification of the item's external behavior 
– Can be done at the Unit, Integration, and System levels 

 
• White Box Testing 

– The tester has knowledge of the inner workings of the item being tested 
– Test cases are based on the specification of the item's external behavior AND 

knowledge of its internal implementation 
– Most commonly done at the Unit level 

 



Software Testing 
• Testing is unlike other software development activities because the goal is to 

break the software rather than to create it 
 

• Effective testing requires an assumption that defects actually exist, and a 
desire to find them 
 

• If you think you won't find defects, or you don't want to, you won’t be 
effective in your testing 
 

• Testing by both developers and an independent testing group are essential 
– They have different perspectives and motivations 
– They do different kinds of tests (developers do white box, test team does 

black box), which tend to discover different types of defects 
 



Software Testing 
• Defects are not evenly distributed (i.e., they tend to cluster) 

 
• Research has shown that: 

– 80% of a system's defects are found in 20% of its code 
– 50% of a system's defects are found in 5% of its code 

 
• There is a high correlation between bugs and complex code. 

– Use tools to measure code complexity, and focus testing on those modules 
with the most complex code 

 
• One goal of testing is to identify the most problematic modules 

– Redesign may be needed if there is an inherent design flaw 
– Or, replace buggy module with a third-party library/product 



Software Testing 

• Automation of test cases is essential to make frequent re-running of 
test cases feasible 
 

• Create programs whose purpose is to test other programs 
 
• Inventing ways to automate test cases can be interesting and 

challenging work that requires lots of software design and coding 
(sometimes called “Test Engineering”) 
 

• Some tests are difficult to automate and must be run manually 
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