
Introduction to Software Testing

Software Testing

• Testing is the process of detecting errors by running the actual software and

verifying that it works as it should
– Test cases, Expected results, Actual results

• Testing is by far the most popular QA activity (but not the most effective)

• Technical reviews (design reviews, code reviews, etc.) are cheaper and more
effective than testing, but are often not done

• Research has shown that all forms of testing combined usually find less than
60% of the errors present

Software Testing
• There are many different types of testing. Three of the most important are:

– Unit Testing: testing individual modules (e.g., classes) to make sure

they work in isolation before combining them with the rest of the
system

– Integration Testing: testing the combination of multiple modules after
they have been integrated together

• If the individual modules work in isolation, can there possibly be
defects in their combination?

• YES! The interactions between the modules can contain defects

– System Testing: testing done on the entire program, after it is
completely integrated

Software Testing
• Exhaustively testing software is not feasible

– The number of possible input combinations is effectively infinite
– The number of unique paths through the code is effectively infinite
– You might not live long enough to exhaustively test a non-trivial software system

• We must do partial testing because we only have enough resources (time and money) to

run relatively few test cases

• Partial testing can never prove the absence of defects

– If the system passes all your test cases, there could still be defects, you just need
more or better test cases to find them

Software Testing

• Effective testing lies in intelligently choosing the relatively few test cases that will
actually be executed

– Test all requirements and features defined in the requirements spec. and functional

spec.

– Test cases should not be redundant (i.e., each one should follow a different path
through the code)

– Focus on scenarios that users are likely to encounter in practice

– Analyze the program’s design and code to find potential weak areas

– Analyze all points at which data enters the system and look for ways to attack it

Software Testing

• Approaches to test case design are generally divided into two broad categories:
Black Box Testing and White Box Testing

• Black Box Testing
– The tester has limited knowledge of the inner workings of the item being

tested
– Test cases are based on the specification of the item's external behavior
– Can be done at the Unit, Integration, and System levels

• White Box Testing

– The tester has knowledge of the inner workings of the item being tested
– Test cases are based on the specification of the item's external behavior AND

knowledge of its internal implementation
– Most commonly done at the Unit level

Software Testing
• Testing is unlike other software development activities because the goal is to

break the software rather than to create it

• Effective testing requires an assumption that defects actually exist, and a
desire to find them

• If you think you won't find defects, or you don't want to, you won’t be
effective in your testing

• Testing by both developers and an independent testing group are essential
– They have different perspectives and motivations
– They do different kinds of tests (developers do white box, test team does

black box), which tend to discover different types of defects

Software Testing
• Defects are not evenly distributed (i.e., they tend to cluster)

• Research has shown that:

– 80% of a system's defects are found in 20% of its code
– 50% of a system's defects are found in 5% of its code

• There is a high correlation between bugs and complex code.

– Use tools to measure code complexity, and focus testing on those modules
with the most complex code

• One goal of testing is to identify the most problematic modules

– Redesign may be needed if there is an inherent design flaw
– Or, replace buggy module with a third-party library/product

Software Testing

• Automation of test cases is essential to make frequent re-running of
test cases feasible

• Create programs whose purpose is to test other programs

• Inventing ways to automate test cases can be interesting and

challenging work that requires lots of software design and coding
(sometimes called “Test Engineering”)

• Some tests are difficult to automate and must be run manually

	Introduction to Software Testing
	Software Testing
	Software Testing
	Software Testing
	Software Testing
	Software Testing
	Software Testing
	Software Testing
	Software Testing

