
Object Serialization
The concept of object serialization

Java’s built-in serialization support

Android has a similar capability called “Parcelable”. (Parceling is faster, but more work. Serialization is

automatic, but slower.)

The Activity Lifecycle
Android Chapter 3

Every activity has a lifecycle. During this lifecycle, an activity transitions between four states: Running,

Paused, Stopped, and Non-existent. For each transition, there is an Activity method that notifies the

activity of the change in its state.

Display and discuss Figure 3.1

Run GeoQuiz(3) to demonstrate lifecycle method calls in logcat (filter by “QuizActivity”).

1. Run GeoQuiz

2. Home button

3. Recents button

4. Back button

Rotation and the Activity Lifecycle

Show that GeoQuiz has a qualified layout resource.

Show that switching between portrait and landscape orientations causes the activity to be destroyed

and re-created with the appropriate resources.

Comment out QuizActivity.onSaveInstanceState() and the code in onCreate() that restores the current

question index.

Demonstrate how rotating the device causes the current question index to be lost (because Android

destroys and re-creates the activity).

Uncomment the code, and explain what it does.

The default onSaveInstanceState() implementation saves the state of all UI components. That’s why you

often don’t need to override this method (i.e., the default does most of what you want). However, you

must override it to preserve state that Android doesn’t know about.

Primitive values can be stored in a Bundle. You can also store Serializable or Parcelable objects.

The Activity Lifecycle, Revisited
Overriding onSaveInstanceState() is not just for handling rotation. An activity can also be stashed if the

user navigates away for a while and Android needs to reclaim memory.

Android will never stash a Running or Paused activity to reclaim memory, but it may stash Stopped

activities.

Show updated activity lifecycle diagram (Figure 3.13). There is a new state named Stashed.

Android tracks existing activities by storing an “activity record” for each activity. When Android needs

to reclaim memory, it may stash an activity by calling onSaveInstanceState() on the activity, and then

storing the serialized activity state in the activity’s record.

Note that when a Stashed activity is reconstituted, Android calls onCreate(Bundle), passing in the

activity’s serialized state. This means that you cannot count on onDestroy() always being called. (You

can count on onPause() and onStop() always being called.)

When are activity records removed from the system? When the user hits the Back button, perhaps on

reboot or when an activity hasn’t been used for a long time. Data you don’t want to lose should be

persisted in a database, etc. (e.g., in onPause or onStop), since your stashed activity state might be

discarded by the OS.

More on Activities
Android Chapter 5

Starting Activities
GeoQuiz (5)

Show simplest code for starting an activity (modify example)

Intent i = new Intent(QuizActivity.this, CheatActivity.class);

startActivity(i);

Explain the Back Stack

Passing Data into Activities
Add code to pass in correct answer:

String EXTRA_ANSWER_IS_TRUE =

"com.bignerdranch.android.geoquiz.answer_is_true";

boolean answerIsTrue = mQuestionBank[mCurrentIndex].isAnswerTrue();

Intent i = new Intent(QuizActivity.this, CheatActivity.class);

i.putExtra(EXTRA_ANSWER_IS_TRUE, answerIsTrue);

startActivity(i);

mAnswerIsTrue = getIntent().getBooleanExtra(EXTRA_ANSWER_IS_TRUE, false);

Returning Results from Activities
Show final version of the code.

int REQUEST_CODE_CHEAT = 0;

startActivityForResult(i, REQUEST_CODE_CHEAT);

@Override

protected void onActivityResult(int requestCode, int resultCode, Intent data)

{

 if (resultCode != Activity.RESULT_OK) {

 return;

 }

 if (requestCode == REQUEST_CODE_CHEAT) {

 if (data == null) {

 return;

 }

 //mIsCheater = CheatActivity.wasAnswerShown(data);

 mIsCheater = data.getBooleanExtra(

 "com.bignerdranch.android.geoquiz.answer_shown", false);

 }

}

private void setAnswerShownResult(boolean isAnswerShown) {

 Intent data = new Intent();

 data.putExtra(EXTRA_ANSWER_SHOWN, isAnswerShown);

 setResult(RESULT_OK, data);

}

Family Map Application
Starting Activities
In Main activity, Person activity is started when event info is clicked. Intent extra used to pass ID of

person to be displayed.

 Implemented in MapFragment

Main activity starts Search, Filter, and Settings activities when they’re selected from the options menu.

 Implemented in MapFragment

 Child Settings activity returns a SettingsResult indicating which settings were changed.

 Child Filter activity returns a FilterResult indicating if any changes were made.

In Person activity, clicking a person starts another Person activity. Intent extra used to pass ID of person

to be displayed.

 Implemented in PersonListItem

In Person activity, clicking an event starts a new Map activity

 Implemented in EventListItem

In Map activity, Person activity is started when event info is clicked. Intent extra used to pass ID of

person to be displayed.

 Implemented in MapFragment

In Map and Person activities, “Go to Top” jumps back to Main activity (preserving the original activity).

 For Map, implemented in MapFragment

In Settings activity, “Re-sync Data” and “Logout” jump back to Main activity (creating a new activity).

Rotation (Extra Credit)
Rotating Main (with map) or Map activities requires saving/restoring selected event ID and map camera

settings.

 Implemented in MapFragment

Rotating Person activity requires saving/restoring booleans indicating whether or not the person and

event sections are expanded.

