Web APIs

API = “Application Programmer Interface”



Internet Basics

The Internet is based on a communication protocol named
TCP (Transmission Control Protocol)

TCP allows programs running on different computers to
connect and communicate directly with each other

TCP requires that each computer have a unique identifier
called an “IP Address”

— 128.187.80.20
— 72.30.38.140



Internet Basics

 Since a computer runs many programs simultaneously, TCP

uses Port Numbers to identify individual programs running
on a computer

— TCP Port Numbers are in the range 0 — 65535

— Ports 0 — 1023 are reserved for system services (email, web, etc.)

— Ports 1024 — 49151 are registered to particular applications

— Ports 49152 — 65535 can be used for custom or temporary purposes

— Email servers typically run on Port 25

— Web servers typically run on Port 80



Internet Basics

« The combination of (IP Address, TCP Port Number)
uniquely identifies a particular program on a particular
computer

— (128.187.80.20, 25) => Email server on machine 128.187.80.20
— (72.30.38.140, 80) => Web server on machine 72.30.38.140



Internet Basics

« Through TCP, a program on one computer can connect to a
program running on another computer by specifying its (IP
Address, TCP Port Number)

— Connect to (128.187.80.20, 25) => Connect to email server on
machine 128.187.80.20

— Connect to (72.30.38.140, 80) => Connect to web server on
machine 72.30.38.140

 Such a TCP connection is called a “Socket”

« Once a connection has been established, the two programs
can pass data back and forth to each other (i.e.,
communicate)



Internet Basics

IP Addresses are hard to remember and work with directly

Users prefer to reference machines by Name rather than by
IP Address

— pinky.cs.byu.edu instead of 128.187.80.20

— www.yahoo.com instead of 72.30.38.140

DNS (Domain Name System) is a protocol for looking up
a machine’s IP Address based on its (Domain) Name

— Connect to (www.yahoo.com, 80)

— DNS, what is the IP Address for “www.yahoo.com”?

— 72.30.38.140

— OK, Connect to (72.30.38.140, 80)



URLs (uniform resource locators)

scheme://domain:port/path?query string#fragment id

« scheme (case-insensitive) — http or https

« domain (case-insensitive) — The server’s domain name or IP address. The
domain name google.com, or its IP address 72.14.207.99, is the address of
Google's website.

 port (optional) — The port, if present, specifies the server’s TCP port number.
For http URLSs, the default port is 80. For https URLS, the default port is
443.

« path (case-sensitive) — The path is used to specify and perhaps locate the
requested resource.

e query_string (optional, case-sensitive) — The query string, if present,
contains data to be passed to software running on the server. It may contain
name/value pairs separated by ampersands, for example
?first name=Johné&last name=Doe.

« fragment_id (optional, case-sensitive) — The fragment identifier, if present,
specifies a part or a position within the overall resource or document.



URLS

http://www.espn.com:80/basketball/nba/index.html?team=dallas&order=name#Roster

« scheme—-http

« domain —www.espn.com

« port—80

 path- /basketball/nba/index.html

e query string— ?team=dallas&order=name
« fragment id - #Roster



Java’s URL Class

import java.net.URL;

URL url = new URL(
"http://www.espn.com:80/basketball/nba/index.html?
team=dallas&order=namef#Roster”) ;

String host = url.getHost();
int port = url.getPort();
String path = url.getPath();
String query = url.getQuery();
String fragment = url.getRef ();

// Many more URL operations



HTTP
(hypertext transfer protocol)

Network protocol that drives the Web
Built on top of TCP
By default, Web servers run on TCP Port 80

HTTP has a Request/Response structure
— Client (e.g., web browser) sends a “request” message to the server

— Server sends back a “response’” message to the client



HTTP Request message format

<method> <request-URL> <version>\r\n
<headers>\r\n

\r\n

<entity-body>

<method> is the operation to perform on URL
<request-URL> can be full URL or just the path part
<version> is of the form HTTP/<major>.<minor>
<entity-body> 1s a stream of bytes (could be empty)

GET /test/hi-there.txt HTTP/1.1
Accept: text/*
Host: www.joes—-hardware.com




HTTP Response message format

<version> <status> <reason-phrase>\r\n
<headers>\r\n

\r\n

<entity-body>

<version> is of the form HTTP/<major>.<minor>

<status> is a 3-digit number indicating status of request
<reason-phrase> human-readable description of status code
<entity-body> 1s a stream of bytes (could be empty)

HTTP/1.0 200 OK
Content-type: text/plain
Content-length: 18

Hi! I'm a message!




HTTP Request Methods

o G ET — Retrieve document from server

¢ POST — Send data to server for processing

PUT — Store document on server

DELETE — Remove document from server

HEAD — Retrieve document headers from server
OPTIONS — Determine what methods the server supports

TRACE — Trace the path taken by a request through proxy
servers on the way to the destination server



HTTP Response status codes

100-199 Informational
200-299 Successful

300-399 Redirection
400-499 Client error
500-599 Server error

200 OK
401 Unauthorized to access resource
404 Requested resource does not exist



HTTP Headers

 List of name/value pairs
e Name: Value\r\n

« Empty line separates headers and entity body

» General headers (request or response)
— Date: Tue, 3 Oct 1974 02:16:00 GMT

» Time at which message was generated

— Connection: close
 Client or server can specify options about the underlying connection



HTTP Request Headers

Host: www.joes—-hardware.com
— Host from the request URL

User-Agent: Mozilla/4.0
— Client application making the request

Accept: text/html, text/xml
— MIME types the client can handle

Referer: http://www.joes-hardware.com/index.html
— Page that contained the link currently being requested

If-Modified-Since: Tue, 3 Oct 1974 02:16:00 GMT
— Conditional request; only send the document if it changed since | last retrieved it



HTTP Response Headers

Content-length: 15023
— Length of response entity body measured in bytes

Content-type: text/html
— MIME type of response entity body

Server: Apache/1.2b6
— Server software that handled the request

Cache-Control: no-cache
— Clients must not cache the response document



HTTP

Java’s class can be used by clients to
make HTTP requests and receive HTTP responses

Java’s class can be used to implement an HTTP
server


http://docs.oracle.com/javase/7/docs/api/java/net/URLConnection.html
http://docs.oracle.com/javase/7/docs/jre/api/net/httpserver/spec/com/sun/net/httpserver/package-summary.html

Java’s URLConnection class (GET)

try {
URL url = new URL(”http://www.byu.edu/”) ;

HttpURLConnection connection = (HttpURLConnection)url.openConnection()
connection.setRequestMethod (”GET”) ;

// Set HTTP request headers, 1if necessary
// connection.addRequestProperty (”Accept”, ”“text/html”);

connection.connect () ;

1f (connection.getResponseCode () == HttpURLConnection.HTTP OK) {
// Get HTTP response headers, 1f necessary
// Map<String, List<String>> headers = connection.getHeaderFields() ;

InputStream responseBody = connection.getInputStream() ;
// Read response body from InputStream

}

else {
// SERVER RETURNED AN HTTP ERROR

}
catch (IOException e) {

// 10 ERROR



Java’s URLConnection class (POST)

try {
URL url = new URL(”http://www.byu.edu/”) ;

HttpURLConnection connection = (HttpURLConnection)url.openConnection()

connection.setRequestMethod ("POST"”) ;
connection.setDoOutput (true) ;

// Set HTTP request headers, 1if necessary
// connection.addRequestProperty (”Accept”, ”“text/html”);

connection.connect () ;

OutputStream requestBody = connection.getOutputStream() ;
// Write request body to OutputStream
requestBody.close() ;

1f (connection.getResponseCode () == HttpURLConnection.HTTP OK) {
// Get HTTP response headers, 1f necessary
// Map<String, List<String>> headers = connection.getHeaderFields() ;

InputStream responseBody = connection.getInputStream() ;
// Read response body from InputStream

}

else {
// SERVER RETURNED AN HTTP ERROR



Ticket to Ride example Web API

Get list of games

— Description: Returns list of currently-running games
— URL Path: /games/list

— HTTP Method: GET

— Request Body: None

— Response Body: JSON of the following form:

{ "game-list": [
{ "name": "fhe game", "player-count”: 3 },
{ "name": "work game", "player-count": 4 },
{ "name": "church game", "player-count": 2 }

]



Ticket to Ride example Web API

« Claim route
— Description: Allows player to claim route between two cities
— URL Path: /routes/claim
— HTTP Method: POST

— Request Body: JSON of the following form:
{ "route": "atlanta-miami" }

— Response Body: None



Java’s HttpServer class

HttpServer server = HttpServer.create (new InetSocketAddress (8000));
server.createContext ("/applications/myapp", new MyHandler()):;
server.setExecutor (null); // creates a default executor
server.start () ;

class MyHandler implements HttpHandler ({
public void handle (HttpExchange t) throws IOException

InputStream is = t.getRequestBody ()
read(is); // .. read the request body
String response = "This 1s the response";
t.sendResponseHeaders (200, response.length());
OutputStream os = t.getResponseBody() ;
os.write(response.getBytes());
os.close();



Java’s HttpExchange class

« The typical life-cycle of a HttpExchange is shown in the
sequence below.

getRequestMethod() to determine the command
getRequestHeaders() to examine the request headers (if needed)

getRequestBody() returns a InputStream for reading the request
body. After reading the request body, the stream is close.

getResponseHeaders() to set any response headers, except content-
length

sendResponseHeaders(int,long) to send the response headers. Must
be called before next step.

getResponseBody() to get a OutputStream to send the response
body. When the response body has been written, the stream must
be closed to terminate the exchange.



Ticket to Ride example Web API

« See example source code on the web site

 Client.java — client class

 Server.java — main server class

 ListGamesHandler.java — handler for /games/list method

« ClaimRouteHandler.java — handler for /routes/claim method



