
Computer Science 240

Principles of Software Design

Goals of Software Design

• Create systems that
– Work
– Easy as possible to understand, debug, and maintain
– Hold up well under changes
– Have reusable components

Design is inherently iterative

• Design, implement, test, Design, implement, test, …
• Feedback loop from implementation back into design

provides valuable knowledge
• Designing everything before beginning implementation

doesn’t work
• Beginning implementation without doing any design also

doesn’t work
• The appropriate balance is achieved by interleaving design

and implementation activities in relatively short iterations

Abstraction
• Abstraction is one of the software designer’s primary tools

for coping with COMPLEXITY
• Programming languages and OSes provide abstractions

that model the underlying machine
• Programs written solely in terms of these low-level

abstractions are very difficult to understand
• Software designers must create higher-level, domain-

specific abstractions, and write their software in terms of
those
– High-level abstractions implemented in terms of low-level

abstractions

Abstraction

• Some abstractions correspond to “real world”
concepts in the application domain
– Examples: Bank, Customer, Account, Loan, Broker, …

• Other abstractions do not correspond to “real
world” domain concepts, but are needed for
internal implementation
– Examples: HttpServer, Database, HashTable, …

Abstraction

• Each abstraction is represented as a class
• Each class has a carefully designed public

interface that defines how the rest of the system
interacts with it

• A client can invoke operations on an object
without understanding how it works internally

• This is a powerful technique for reducing the
cognitive burden of building complex systems

Naming
• A central part of abstraction is giving things

names (or identifiers)
• Selecting good names for things is critical
• Class, method, and variable names should clearly

convey their function or purpose
• Class and variable names are usually nouns
• Method names are usually verbs

– Exceptions
• Object properties (ID, Name, Parent, etc.)
• Event handlers (MouseMoved, UserLoggedIn)

Cohesion / Single Responsibility
• Each abstraction should have a single responsibility
• Each class should represent one, well-defined

concept
– All operations on a class are highly related to the class’

concept
• Each method should perform one, well-defined task

– Unrelated or loosely related tasks should be in different
methods

• Cohesive classes and methods are easy to name

Abstracting All the Way

• Some abstractions are simple enough to store directly
using the language’s built-in data types
– Name => string
– Pay Grade => int
– Credit Card => string

• Often it is best to create classes for such simple
abstractions for the following reasons:
– Data validation
– Related operations
– Code readability

Decomposition

• In addition to Abstraction, Decomposition is the
other fundamental technique for taming
COMPLEXITY

• Large problems subdivided into smaller sub-
problems

• Subdivision continues until leaf-level problems
are simple enough to solve directly

• Solutions to sub-problems are recombined into
solutions to larger problems

Decomposition

• Decomposition is strongly related to Abstraction
• The solution to each sub-problem is encapsulated

in its own abstraction (class or subroutine)
• Solutions to larger problems are concise because

they’re expressed in terms of sub-problem
solutions, the details of which can be ignored

• The decomposition process helps us discover (or
invent) the abstractions that we need

Decomposition

• Levels of decomposition
– System
– Subsystem
– Packages
– Classes
– Routines

• Hypo- and Hyper-Decomposition
• When have we decomposed far enough?

– Size metrics
– Complexity metrics
– Single responsibility

Algorithm & Data Structure
Selection

• No amount of decomposition or abstraction will
hide a fundamentally flawed selection of
algorithm or data structure.

Minimize Dependencies

• Dependencies
– Class A CALLS Class B
– Class A HAS MEMBER OF Class B
– Class A INHERITS FROM Class B

Minimize Dependencies

• Minimizing the number of interactions between
different classes has several benefits:
– A class with few dependencies is easier to understand
– A class with few dependencies is less prone to ripple

effects
– A class with few dependencies is easier to reuse

Minimize Dependencies

• When classes must interact, if possible they should
do so through simple method calls
– This kind of dependency is clear in the code and

relatively easy to understand

Separation of Interface and
Implementation

• Maintain a strict separation between a class’
interface and its implementation

• This allows internal details to change without
affecting clients

• interface Stack + class StackImpl
• Program to interfaces instead of concrete classes

Information Hiding
• Many languages provide “public”, “private”, and

“protected” access levels
• All internal implementation is “private” unless

there’s a good reason to make it “protected” or
“public”

• A class’ public interface should be as simple as
possible

Information Hiding

• Don’t let internal details “leak out” of a class
– ClassRollinstead of StudentLinkedList

• Some classes or methods are inherently tied to a
particular implementation. For these it is OK to
use an implementation-specific name
– HashTable

– TreeSet

Code Duplication

• Code duplication should be strenuously avoided
– Identical or similar sections of code

• Disadvantages of duplication:
– N copies to maintain
– Bugs are duplicated N times
– Makes program longer, decreasing maintainability

• Solutions
– Factor common code into a separate method or class
– Shared code might be placed in a common superclass

	Computer Science 240
	Goals of Software Design
	Design is inherently iterative
	Abstraction
	Abstraction
	Abstraction
	Naming
	Cohesion / Single Responsibility
	Abstracting All the Way
	Decomposition
	Decomposition
	Decomposition
	Algorithm & Data Structure Selection
	Minimize Dependencies
	Minimize Dependencies
	Minimize Dependencies
	Separation of Interface and Implementation
	Information Hiding
	Information Hiding
	Code Duplication

