
Principles of Software Design

This paper presents fundamental principles of effective software design. If consistently
applied, they help us to achieve simple, understandable, and robust software designs.
They provide criteria for choosing between various design alternatives. All design
decisions should be evaluated against them to ensure their consistent application. These
principles also provide a framework for evaluating the quality of software designs created
by others.

Goals of Software Design
Software design is primarily about managing complexity. Software systems are often
very complex and have many moving parts. Most systems must support dozens of
features simultaneously. Each feature by itself might not seem very complicated.
However, when faced with the task of creating one coherent structure that supports all of
the required functionality at once, things become complicated very quickly. Human
capacity to deal with complexity is quite limited; people become overwhelmed and
confused relatively quickly. Perhaps the primary objective of software design is to make
and keep software systems well organized, thus enhancing our ability to understand,
explain, modify, and fix them.

Based on this view of software design, disorganization (or sloppiness) is the antithesis of
good software design. As the laws of physics teach us, the universe tends to become
more disorganized over time unless we take active steps to make and keep it organized.
Software systems are very much the same way. If created or modified without careful
forethought, software systems quickly become incomprehensible, tangled messes that
don’t work right and are impossible to fix. This is especially true for systems that remain
in use over extended periods of time, and are periodically upgraded to support new
features. Even if a system starts out with a good design, we must consistently strive to
preserve the integrity of its design throughout its lifetime by carefully considering all
changes we make to it.

Based on these principles, we can list several important goals of software design:
 Software that works
 Software that is easy to read and understand
 Software that is easy to debug and maintain
 Software that is easy to extend and holds up well under changes
 Software that is reusable in other projects

Design Is an Iterative Process
Software design is a complex undertaking. Therefore, you will rarely get a design right
the first time. Implementing a design provides new insights into its deficiencies: things
you didn't think about, better ways of doing things, etc. Such insights should feed back
into your design to make it better. For this reason, design and implementation activities
are usually interleaved in short iterations: Design, code, test, debug, Design, code, test,
debug, …

The notion that a complex system can be completely designed in every detail before
implementation begins is fallacious. Such an approach deprives designers of valuable
knowledge and experience that come only from actually implementing the design. The
opposite extreme is also dangerous, starting implementation having done little or no
design at all. Those who start coding immediately and wing it as they go are even more
prone to failure than those who try to design everything up front. The truth lies between
these two extremes. You should do enough design to have a fairly detailed idea of how
things will work, and then implement the design to discover its deficiencies. Then, go
back and incorporate what you’ve learned into the design, and then implement some
more. This process will eventually converge on a good design.

Abstraction
Abstraction is one of the software designer’s primary tools for coping with complexity.

Most programming languages and their associated libraries are meant to be general
purpose. They can be used to implement solutions to problems in any application domain
(finance, retail, biology, communications, etc.). Due to their general purpose nature,
these languages provide only low-level abstractions such as bit, byte, character, string,
integer, float, array, file, etc. that model the machines on which the software will run
rather than the application domain of the problem being solved. Programs written solely
in terms of these low-level abstractions are extremely difficult to understand. Effective
software design requires the creation of new, higher-level abstractions that map directly
to the application domain rather than the underlying computer.

In object-oriented design, application-specific abstractions are represented as classes.
Classes encapsulate the state (or data) and operations (or algorithms) associated with a
particular higher-level application concept. For example, the design for a word processor
would contain classes such as Document, Font, Table, Figure, and Printer.
Similarly, the design for a web browser would contain classes such as Favorites,
URL, Viewer, and NetworkProtocol. Software written in terms of such higher-
level abstractions is far more understandable to the human reader because it is expressed
in terms of the application domain rather than the underlying machine.

There may also be mid-level abstractions such as ArrayList, ThreadPool, and
ConnectionManager that don’t map directly the concepts of the application domain,
but that still play an important role in the implementation of the system. Such mid-level
abstractions are helpful in bridging the gap between high-level application concepts and
low-level facilities provided by the programming language.

As stated above, part of effective abstraction is identifying a good set of classes that
effectively model the application domain. Another part of effective abstraction is
carefully defining the interfaces (i.e., operations) supported by those classes. While
classes represent the nouns of the application domain, the operations supported by classes
represent the verbs. The ability to execute a complex, domain-specific operation by

calling a single method on an object leads to concise, highly-readable code. For example,
the following line of code might be used to print a document:

defaultPrinter.print(document);

While only one line of code is required to print a document, it obviously requires a lot of
low-level work underneath to actually send the document’s contents to the printer. This
work must be carried out by the implementation of the print method. How does
print actually print the document? I don’t know, and I don’t want to know. Unless I
am actually implementing the print method, I prefer to ignore those details, thus
freeing me to think about something else. The ability to hide all of this complexity
behind a simple method call demonstrates the power of abstraction: a complex idea can
be conveyed very concisely, thus shielding the reader from many low-level details that
might otherwise cloud their thinking.

Naming
Abstraction involves taking something that is complicated, giving it a simple name, and
then referring to it by its simple name. This way, complex ideas can be conveyed very
concisely. With this in mind, one of the most important tools for achieving effective
abstraction is the identifier. An identifier is a name that we assign to something. We
choose names for classes, methods, variables, constants, source files, etc. While selecting
a name might seem to be a relatively inconsequential thing, it is not. The names we
choose for things go a long way toward determining how readable our code becomes.
Even if I create the right class, if I name it poorly, much of the benefit to be gained from
abstraction has been lost. For example, if I name the class that represents printers as
Thingy instead of Printer, I have done significant harm to the readability of my
design.

The name assigned to a class, variable, or method should clearly and accurately reflect
the function performed by that class, variable, or method. The name Printer implies
that a class represents a printer; the name calculatePayrollTax implies that a
method calculates payroll taxes; the name homeAddress implies that a variable stores a
home address. In contrast, the names Thingy, doStuff, and info would convey no
information whatsoever to the reader. Name selection makes a huge difference.

In general, class names should be nouns, and method names should be verbs. There are
occasional exceptions to this rule, but it applies in the vast majority of cases. One
exception to this rule relates to methods that get/set object attribute values, such as
getName and setName. Depending on the style you prefer, one or both of these
methods could alternatively be named with a noun.

Cohesion
Abstractions (i.e., classes and operations) should be highly cohesive.

Each class should represent one well-defined concept, and should be given a name that
clearly reflects the concept it represents (e.g., URL). Cohesive classes are almost always
easy to name. In fact, the name they should be given is often obvious, because they
represent only one concept. The operations on a class should all be highly-related to the
concept represented by the class. For example, URL operations should all be highly
related to storing and manipulating URLs. Operations like getPath, getFileName,
and resolveRelative would be appropriate. Operations that are loosely related or
unrelated to the concept represented by the class should be placed on some other class.
For example, a URL class should not have a display method that renders the document
referenced by the URL on the screen. The rendering function is only loosely related to
the concept of a URL, and so should be placed on a different class (e.g., FileViewer).

Class operations should also be highly cohesive. Each operation should perform one
well-defined task, and should be given a name that clearly reflects the task it performs
(e.g., rebootComputer). Cohesive operations are almost always easy to name,
because they do only one thing. If a method does a bunch of loosely related or unrelated
things, it will either be hard to find a good name that describes what the operation does,
leading to inferior names like handleStuff, or the method’s name will become too
long (e.g., sweepFloorAndDoDishesAndPayBills).

Abstracting All the Way
A typical design contains many classes, some larger and more complex, others relatively
simple. Some abstractions are simple enough that they can be directly represented using
one of the built-in data types provided by the programming language (e.g., integer, string,
float, etc.). For example, concepts such as “title”, “pay grade”, or “credit card number”
could be directly represented using strings or integers. The question is: Is it worth
creating classes to represent relatively simple abstractions such as these? Should a
designer create classes named Title, PayGrade, and CreditCardNumber, or just
go ahead and use strings or integers directly to represent this kind of information? Of
course, even if we create such classes, internally they will store integers or strings
anyway. Does it help to create such classes, or is it OK to just use the built-in types
directly?

Creating classes to represent relatively simple abstractions is often the better choice.
Following are some criteria to help make the decision:

1) Domain Checking – Programs need to validate input values that come from end
users, files, or other input sources. This is done by parsing or otherwise
inspecting the input values to ensure they are valid and lie within acceptable
ranges. For example, phone numbers might enter a program as string values, but
most strings are not valid phone numbers. Rather than using strings to store
phone numbers, it would be better to create a PhoneNumber class to store phone
numbers. The PhoneNumber class would contain the code necessary to validate
phone number inputs, probably in a constructor. Input strings containing phone
numbers would be passed to the constructor, which would parse the string. If the

string contained a valid phone number, the constructor would store it in the object
for later use. If the string was not a valid phone number, an exception would be
thrown. Domain checking is an excellent reason to create classes to represent
data values that could otherwise be stored directly as built-in data types.

2) Additional Operations – Creating classes to represent simple data values provides

a place to put operations that operate on those data types. For example, URLs
could be stored directly as strings, but if we do so there will be no place to locate
URL-related algorithms that may be needed as the program evolves (parsing
URLs into their component parts, resolving relative URLs, etc.). Creating a URL
class, however, would provide an excellent place to put such URL-related
operations.

3) Code Readability – Creating classes for simple abstractions can enhance a

program’s readability. For example, if you see a variable of type String, you
don’t know much about what the variable represents. If you see a variable of type
URL, you know a lot about what it represents (i.e., a URL). Creating classes for
simple data types enhances readability because variable, parameter, and return
types are much more descriptive about what kind of data they represent. Of
course, giving good names to variables and parameters will go a long way toward
telling the reader what kind of data they represent. Return values, however, don’t
have names (at least not directly).

Decomposition
In addition to abstraction, another fundamental technique for dealing with complexity is
taking the original problem and dividing it into several smaller sub-problems. The sub-
problems are smaller and hence less complex than the original, thus making them more
approachable. After solving each sub-problem individually, the solutions to the sub-
problems can be combined to create a solution to the original, larger problem. This
approach is frequently called “divide and conquer”.

After breaking the original problem into sub-problems, we may find that the sub-
problems themselves are still too complex to solve directly. In this case, we decompose
the sub-problems yet again to create second-level sub-problems that are even simpler.
Sub-problems are divided into smaller and smaller parts until the smallest sub-problems
are simple enough to solve directly, and thus require no further subdivision. In effect, we
create a tree of problems, where the original problem is at the root, and each successive
level of subdivision adds another level of nodes to the tree. The solution to each sub-
problem makes use of the solutions to the sub-problems below it. This approach allows
us to cope with the inherent complexity of the original problem in bite-size chunks.

Decomposition is strongly related to abstraction. The solution to each sub-problem is
abstracted as a class or method. The solution to the larger problem invokes the
abstractions which encapsulate the sub-problem solutions. This results in a concise
solution to the original problem, and allows the details of the sub-problem solutions to be
temporarily ignored, thus reducing the cognitive burden of solving the original problem.

It is through the decomposition process that many of the necessary abstractions are
discovered (or invented).

Levels of Design

System

Subsystems

Packages

Classes

Routines

Decomposition is inherently a top-down process. At the topmost level we have the entire
system. The first level of decomposition divides the system into subsystems, each of
which represents a major but somewhat independent chunk of the system’s functionality.
For example, the subsystems for a web browser might be Network Protocols,
File Viewers, History, Favorites, Printing, etc.

At the next level of decomposition, each subsystem is further subdivided into packages.
Each package is responsible for implementing a part of the subsystem’s functionality.
For example, a web browser’s File Viewers subsystem might contain a separate
package for each different file format that the browser can display (HTML, PDF, XML,
etc.). The package corresponding to a particular format would contain the code that
implements the file viewer for that format.

A package is further decomposed into a collection of one or more classes that together
implement that package’s functionality. For example, the web browser’s HTML viewer
might consist of a dozen different classes.

The functionality of each class is further decomposed into routines which implement the
operations (or algorithms) of the class. Significant algorithms are typically decomposed

further into multiple levels of subroutines. Decomposition continues until the leaf-level
subroutines are simple enough to implement directly.

Hypo- and Hyper- Decomposition
Many software designers, especially beginners, tend to not decompose things far enough.
This might be referred to as hypo-decomposition (hypo means deficient). An extreme
example of this would be implementing an entire program in a single class. The one and
only class would implement all of the functionality for the entire program. Such a class
would be an egregious violation of the cohesion principle discussed earlier, which states
that a class should “do one thing, and do it well”. One could argue that a one-class
application is very cohesive because the class does only one thing – it implements the
entire application! While there is nothing wrong (and often much right) with having a
class that represents the entire application (e.g., a WebBrowser class), it is wholly
inappropriate to actually implement all of the application’s functionality on that one
class. Instead, the main class should delegate to other, smaller classes which implement
various subsets of the program’s functionality. The main class, then, is primarily a
delegator (or “driver”), and performs little or no actual work itself other than driving the
other classes. In general, if a class represents a large or complex concept, its
functionality should be decomposed into one or more smaller classes that perform the
actual work. Often these second-level classes will also need to be decomposed further
into even smaller classes. This decomposition should be repeated until the resulting
classes are too simple to decompose further.

At the other extreme are those who decompose things too far, which might be called
hyper-decomposition (hyper means excessive). This mistake is harder to make and far
more rare than hypo-decomposition. When decomposing a system, one must have a
sense of when they have decomposed far enough. In general, we have said that a system
has been decomposed sufficiently when its sub-parts are simple enough to “implement
directly”. Everyone has a slightly different sense of when that point has been reached.

Although rare, it is possible to decompose too far. For example, a
CreditCardNumber class might be created to represent the concept of a credit card
number. This seems like a good design choice. But, how should a
CreditCardNumber object store the actual credit card number internally? A String
seems like a natural representation for a credit card number (after it has been validated by
the CreditCardNumber constructor, of course). Alternatively, it would also be
possible to store a credit card number as an array of Digit objects. Most people would
say that creating a Digit class to store individual digits in a credit card number is
overkill, and an example of hyper-decomposition.

Size and Length Metrics
How shall we know when we have decomposed far enough? Length metrics, often
measured in lines of code (LOC), can be helpful in making this determination. A method
that contains a single LOC has been decomposed far enough, of course. A method that
contains 500 LOC almost certainly has not been decomposed far enough. Methods that
have been sufficiently decomposed are usually less than 50 LOC, and in many cases 50

LOC is still too long. Maybe 20 LOC would be a better goal. While there is no “right”
method length, the basic principle is that when an algorithm has been decomposed
sufficiently, the resulting subroutines which implement the algorithm tend to be short –
frequently, very short.

Size metrics such as the number of parameters can also be used to judge how well a
method has been decomposed. A method that requires 10 parameters is too complex.
The problem might be one of insufficient decomposition.

Class size can also provide a clue as to whether or not a class has been decomposed far
enough. A class with 50 methods has probably not been decomposed far enough. Such a
class is probably doing the work of several classes. As a result, the class is also not
cohesive, and should be further subdivided.

Classes with a lot of internal variables are also usually insufficiently decomposed. If a
class contains a lot of variables (e.g., 20), there are probably smaller subgroups of those
variables that are closely related to each other. These clusters of related variables will
often suggest new classes to be created, thus further decomposing the original class. The
original class would then become a client of the newly discovered classes.

Similarly, a class that contains 5,000 LOC has almost certainly not been decomposed far
enough. A class containing 2,000 LOC often requires further decomposition, but not
always. Well-designed classes often contain less than 500 LOC, frequently much less
(but, not always). There is no “right” class length, but, in general, classes that have been
decomposed sufficiently tend to be shorter rather than longer.

Complexity Metrics
Sometimes length metrics based on LOC measurements don’t tell the whole story. It is
possible for two methods with the same length measured in LOC to have radically
different complexity levels. For example, imagine two 100-line methods, the first
containing only straight-line output statements (e.g., println), and the second
containing complex logic with deeply nested loops and lots of branching. While these
methods have the same length, their complexity levels are not even close. Straight-line
output statements are readily understandable, while complex logic is far more difficult to
understand. Both methods might benefit from further decomposition, but the second one
demands it.

In general, methods containing complex arithmetic expressions, deeply nested structures,
and lots of branching should be simplified by breaking up the complex routine into
simpler subroutines that each perform part of the original routine’s work. The original
routine then becomes a driver routine that delegates much of the actual work to its
subordinates.

Many routines naturally contain multiple sections (or paragraphs) of related statements
that can be easily factored out into a separate subroutines. Moving a paragraph of related
statements to a separate subroutine, giving the new subroutine a good name, and

replacing the original statements with a call to the new subroutine will do much to
simplify the original routine. Consistently applying this technique of algorithm
decomposition will have a significant positive impact on the quality of your code.

Algorithm & Data Structure Selection
A major part of software design is selecting appropriate algorithms and data structures for
the problem at hand. Using an algorithm that is O(n3) on data sets that become very large
will almost certainly be far too slow, regardless of how well we have decomposed and
abstracted the problem. Similarly, storing data values as unsorted, linear lists will be far
too slow if the data set is large and needs to be searched frequently. Selecting (or
inventing) algorithms and data structures with good performance characteristics
(including running time and memory consumption) for the intended application is a
fundamental design skill. No amount of decomposition or abstraction will hide a
fundamentally flawed selection of algorithm or data structure.

Minimize Dependencies (or, Low Coupling)
Large systems contain many classes. As a system is decomposed into its constituent
classes, it is important to keep each class as independent as possible from the other
classes in the system. Classes A and B depend on each other if:

1) Class A invokes a method on class B
2) Class A accesses the internal state of class B
3) Class A inherits from class B
4) Class A has a method parameter of class B
5) Class A and Class B both access the same global data structure or file
6) Etc.

Minimizing the number of communication channels and interactions between different
classes has several benefits:

1) A class with few dependencies on other classes is generally easier to understand
than a class with many dependencies on other classes (i.e., dependencies increase
a class’s complexity)

2) A class with few dependencies on other classes is less prone to ripple effects
caused by changes or defects in other classes (i.e., dependencies make a system
harder to modify and debug).

3) A class with few dependencies on other classes is easier to reuse in a different
program than a class with many dependencies (i.e., dependencies discourage
reuse).

Imagine a system in which every class depends on every other class. Every time any
class is changed, we must consider the potential impact on all other classes (very
confusing, indeed). Similarly, when a class has a defect, the defect will potentially
impact the behavior of all other classes, thus making it difficult to track down where the
defect actually resides (again, very confusing).

At the other extreme, imagine a system where there are no dependencies between classes
(i.e., each class is an island unto itself). In this case, the software doesn’t do anything.
Making a program perform useful functions requires a certain level of communication
(and therefore dependency) between the classes in the system. The goal is not to remove
all dependencies, but rather to minimize the number and strength of dependencies.

When two classes must interact, it is desirable to keep the interaction as simple and
straightforward as possible. The ideal form of interaction between two classes is through
simple method calls. A method call is simple if it has a good name and the data passed
through the parameter list and return value is easy to understand. Simple method calls
have the advantage of being direct and obvious in the code. Other more indirect forms of
communication between classes, such as accessing the same global data structure, make
the dependency less explicit and harder to detect and comprehend. To the extent
possible, interactions between classes should be through explicit, well-defined method
interfaces.

Separation of Interface and Implementation
One important technique for minimizing dependencies between classes is maintaining a
strict separation between a class’s public interface and its internal implementation. A
class’s public interface consists of the operations (or methods) through which clients can
access its services. In order to use a class, a client needs only to understand the class’s
public interface. The details of how the public interface is implemented internally are
incidental to the client, and should not be accessed or relied upon by the client in any
way. The code that implements the public interface, including all variables and
subroutines that support that code, should not be accessed by clients. By relying only on
the details of the public interface, a class’s internal implementation can be changed
without affecting (i.e., breaking) its clients. Only changes to the public interface itself
affect the clients. The strict separation of interface and implementation goes a long way
toward minimizing dependencies between classes.

Information Hiding
Because the separation of interface and implementation is so central to good software
design, programming languages often provide features to help enforce this separation.
Some languages physically separate a class’s public interface and internal
implementation into separate source files. Other languages require the designer to
declare all class features (variables and methods) as “public”, “private”, or “protected”,
thus preventing clients from accessing private details. Such language features encourage
designers to hide as much information as possible from clients, thus reducing
opportunities for dependency between classes.

A class’s public interface should be as small (or “thin”) as possible, ideally including
only a small number of methods. Each public method’s parameters should be as simple
as possible. All internal variables should be hidden, and only methods that are directly
invoked by clients should be made public.

This advice applies even to inheritance relationships. By making variables “protected”, it
is easy for a superclass to directly expose its internal variables to its subclasses. This
makes the subclasses highly dependent on the internal details of the superclass. As
always, this makes it difficult to change the superclass implementation without breaking
the subclasses. A designer may choose to make superclasses and subclasses highly
coupled in this manner, but the downsides of doing so should be considered when making
this decision. Another approach would be to define the superclass/subclass interface in
terms of “protected” methods only (i.e., no “protected” variables), thus reducing the level
of dependency between superclass and subclass.

Designers should also be careful to ensure that internal implementation details do not
“leak out” of a class. For example, a method that performs a search algorithm might be
named binarySearch. Unfortunately, the name binarySearch reveals the
method’s internal implementation. This choice of name forever binds the method to use
the binary search algorithm as its implementation. Alternatively, naming the method
search would preserve the designer’s freedom to vary the internal algorithm without
violating the client contract.

Similarly, a grade-keeping program might represent the notion of a class roll with a class
named StudentLinkedList. However, doing so betrays the fact that the class uses a
linked list as the internal data structure for storing a sequence of students. A better
choice would be to name the class ClassRoll, thus hiding all details of how students
are actually stored internally, and preserving freedom to change that representation at
will.

There are times, however, when a class or method is inherently tied to a particular
implementation. In such cases, it is appropriate to name classes or methods in terms of
their internal details. For example, a class whose sole purpose is to implement a hash
table could appropriately be named HashTable because its implementation is an
inherent part of its existence. A hash table will always be a hash table, and that will
never change. However, clients of the HashTable class should not reveal their internal
use of HashTable unless that choice is inherent and will never change.

Avoid Code Duplication
Another core principle of good software design is that code duplication should be
strenuously avoided. Frequently, programs will contain duplicated sections of code, or
sections of code that are very similar. For example, searching an array for a particular
value is a common operation, and this code could easily be duplicated many times
throughout a program. Similarly, formatting of date/time values for end-user display is a
common operation that is often be duplicated throughout a program.

The disadvantages associated with duplication are fairly obvious:

1) If the duplicated code needs to be modified, we must remember to change all N
copies, and do so correctly.

2) If the duplicated code contains a bug, the bug will the replicated N times.

3) Duplication makes the program longer, thus decreasing its maintainability.

If the same or similar code appears in N places, the obvious solution is to isolate the
duplicated code in one place, and then have all N clients invoke the shared copy. If all N
copies are in the same class, the duplicated code can be factored out into a private method
on that class. If the N copies are in different classes, the shared copy could be placed on
one of the client classes, or placed on some other (possibly new) class that provides a
logical home for the shared code. Another solution would be to place the shared code in
a superclass, and then make each client class a subclass of the superclass.

If the duplicated code is similar but not identical, it might be possible to create a generic
version that will serve the needs of all clients. If the implementation language provides
generic types (e.g., C++ templates), a generic type or subroutine will often be a good
implementation choice for the shared code.

Design Principles Summary
1. Abstraction

a. Naming
b. Cohesion
c. Abstracting All the Way

2. Decomposition
a. Levels of Design (System, Subsystem, Package, Class, Routine)
b. Hypo- and Hyper- Decomposition
c. Size and Length Metrics
d. Complexity Metrics

3. Algorithm & Data Structure Selection
4. Minimize Dependencies (or, Low Coupling)

a. Separation of Interface and Implementation
b. Information Hiding

5. Avoid Code Duplication

	Principles of Software Design
	Goals of Software Design
	Design Is an Iterative Process
	Abstraction
	Naming
	Cohesion
	Abstracting All the Way

	Decomposition
	Levels of Design
	Hypo- and Hyper- Decomposition
	Size and Length Metrics
	Complexity Metrics

	Algorithm & Data Structure Selection
	Minimize Dependencies (or, Low Coupling)
	Separation of Interface and Implementation
	Information Hiding

	Avoid Code Duplication
	Design Principles Summary

