
Principles of Software Design 
 
This paper presents fundamental principles of effective software design.  If consistently 
applied, they help us to achieve simple, understandable, and robust software designs.  
They provide criteria for choosing between various design alternatives.  All design 
decisions should be evaluated against them to ensure their consistent application.  These 
principles also provide a framework for evaluating the quality of software designs created 
by others. 

Goals of Software Design 
Software design is primarily about managing complexity.  Software systems are often 
very complex and have many moving parts.  Most systems must support dozens of 
features simultaneously.  Each feature by itself might not seem very complicated.  
However, when faced with the task of creating one coherent structure that supports all of 
the required functionality at once, things become complicated very quickly.  Human 
capacity to deal with complexity is quite limited; people become overwhelmed and 
confused relatively quickly.  Perhaps the primary objective of software design is to make 
and keep software systems well organized, thus enhancing our ability to understand, 
explain, modify, and fix them. 
 
Based on this view of software design, disorganization (or sloppiness) is the antithesis of 
good software design.  As the laws of physics teach us, the universe tends to become 
more disorganized over time unless we take active steps to make and keep it organized.  
Software systems are very much the same way.  If created or modified without careful 
forethought, software systems quickly become incomprehensible, tangled messes that 
don’t work right and are impossible to fix.  This is especially true for systems that remain 
in use over extended periods of time, and are periodically upgraded to support new 
features.  Even if a system starts out with a good design, we must consistently strive to 
preserve the integrity of its design throughout its lifetime by carefully considering all 
changes we make to it. 
 
Based on these principles, we can list several important goals of software design: 
 Software that works 
 Software that is easy to read and understand 
 Software that is easy to debug and maintain 
 Software that is easy to extend and holds up well under changes 
 Software that is reusable in other projects 

Design Is an Iterative Process 
Software design is a complex undertaking.  Therefore, you will rarely get a design right 
the first time.  Implementing a design provides new insights into its deficiencies: things 
you didn't think about, better ways of doing things, etc.  Such insights should feed back 
into your design to make it better.  For this reason, design and implementation activities 
are usually interleaved in short iterations: Design, code, test, debug, Design, code, test, 
debug, … 



 
The notion that a complex system can be completely designed in every detail before 
implementation begins is fallacious.  Such an approach deprives designers of valuable 
knowledge and experience that come only from actually implementing the design.  The 
opposite extreme is also dangerous, starting implementation having done little or no 
design at all.  Those who start coding immediately and wing it as they go are even more 
prone to failure than those who try to design everything up front.  The truth lies between 
these two extremes.  You should do enough design to have a fairly detailed idea of how 
things will work, and then implement the design to discover its deficiencies.  Then, go 
back and incorporate what you’ve learned into the design, and then implement some 
more.  This process will eventually converge on a good design. 

Abstraction 
Abstraction is one of the software designer’s primary tools for coping with complexity. 
 
Most programming languages and their associated libraries are meant to be general 
purpose.  They can be used to implement solutions to problems in any application domain 
(finance, retail, biology, communications, etc.).  Due to their general purpose nature, 
these languages provide only low-level abstractions such as bit, byte, character, string, 
integer, float, array, file, etc. that model the machines on which the software will run 
rather than the application domain of the problem being solved.  Programs written solely 
in terms of these low-level abstractions are extremely difficult to understand.  Effective 
software design requires the creation of new, higher-level abstractions that map directly 
to the application domain rather than the underlying computer. 
 
In object-oriented design, application-specific abstractions are represented as classes.  
Classes encapsulate the state (or data) and operations (or algorithms) associated with a 
particular higher-level application concept.  For example, the design for a word processor 
would contain classes such as Document, Font, Table, Figure, and Printer.  
Similarly, the design for a web browser would contain classes such as Favorites, 
URL, Viewer, and NetworkProtocol.  Software written in terms of such higher-
level abstractions is far more understandable to the human reader because it is expressed 
in terms of the application domain rather than the underlying machine. 
 
There may also be mid-level abstractions such as ArrayList, ThreadPool, and 
ConnectionManager that don’t map directly the concepts of the application domain, 
but that still play an important role in the implementation of the system.  Such mid-level 
abstractions are helpful in bridging the gap between high-level application concepts and 
low-level facilities provided by the programming language. 
 
As stated above, part of effective abstraction is identifying a good set of classes that 
effectively model the application domain.  Another part of effective abstraction is 
carefully defining the interfaces (i.e., operations) supported by those classes.  While 
classes represent the nouns of the application domain, the operations supported by classes 
represent the verbs.  The ability to execute a complex, domain-specific operation by 



calling a single method on an object leads to concise, highly-readable code.  For example, 
the following line of code might be used to print a document: 
 

defaultPrinter.print(document); 
 
While only one line of code is required to print a document, it obviously requires a lot of 
low-level work underneath to actually send the document’s contents to the printer.  This 
work must be carried out by the implementation of the print method.  How does 
print actually print the document?  I don’t know, and I don’t want to know.  Unless I 
am actually implementing the print method, I prefer to ignore those details, thus 
freeing me to think about something else.  The ability to hide all of this complexity 
behind a simple method call demonstrates the power of abstraction: a complex idea can 
be conveyed very concisely, thus shielding the reader from many low-level details that 
might otherwise cloud their thinking. 

Naming 
Abstraction involves taking something that is complicated, giving it a simple name, and 
then referring to it by its simple name.  This way, complex ideas can be conveyed very 
concisely.  With this in mind, one of the most important tools for achieving effective 
abstraction is the identifier.  An identifier is a name that we assign to something.  We 
choose names for classes, methods, variables, constants, source files, etc.  While selecting 
a name might seem to be a relatively inconsequential thing, it is not.  The names we 
choose for things go a long way toward determining how readable our code becomes.  
Even if I create the right class, if I name it poorly, much of the benefit to be gained from 
abstraction has been lost.  For example, if I name the class that represents printers as 
Thingy instead of Printer, I have done significant harm to the readability of my 
design. 
 
The name assigned to a class, variable, or method should clearly and accurately reflect 
the function performed by that class, variable, or method.  The name Printer implies 
that a class represents a printer; the name calculatePayrollTax implies that a 
method calculates payroll taxes; the name homeAddress implies that a variable stores a 
home address.  In contrast, the names Thingy, doStuff, and info would convey no 
information whatsoever to the reader.  Name selection makes a huge difference. 
 
In general, class names should be nouns, and method names should be verbs.  There are 
occasional exceptions to this rule, but it applies in the vast majority of cases.  One 
exception to this rule relates to methods that get/set object attribute values, such as 
getName and setName.  Depending on the style you prefer, one or both of these 
methods could alternatively be named with a noun. 

Cohesion 
Abstractions (i.e., classes and operations) should be highly cohesive. 
 



Each class should represent one well-defined concept, and should be given a name that 
clearly reflects the concept it represents (e.g., URL).  Cohesive classes are almost always 
easy to name.  In fact, the name they should be given is often obvious, because they 
represent only one concept.  The operations on a class should all be highly-related to the 
concept represented by the class.  For example, URL operations should all be highly 
related to storing and manipulating URLs.  Operations like getPath, getFileName, 
and resolveRelative would be appropriate.  Operations that are loosely related or 
unrelated to the concept represented by the class should be placed on some other class.  
For example, a URL class should not have a display method that renders the document 
referenced by the URL on the screen.  The rendering function is only loosely related to 
the concept of a URL, and so should be placed on a different class (e.g., FileViewer). 
 
Class operations should also be highly cohesive.  Each operation should perform one 
well-defined task, and should be given a name that clearly reflects the task it performs 
(e.g., rebootComputer).  Cohesive operations are almost always easy to name, 
because they do only one thing.  If a method does a bunch of loosely related or unrelated 
things, it will either be hard to find a good name that describes what the operation does, 
leading to inferior names like handleStuff, or the method’s name will become too 
long (e.g., sweepFloorAndDoDishesAndPayBills).   

Abstracting All the Way 
A typical design contains many classes, some larger and more complex, others relatively 
simple.  Some abstractions are simple enough that they can be directly represented using 
one of the built-in data types provided by the programming language (e.g., integer, string, 
float, etc.).  For example, concepts such as “title”, “pay grade”, or “credit card number” 
could be directly represented using strings or integers.  The question is: Is it worth 
creating classes to represent relatively simple abstractions such as these?  Should a 
designer create classes named Title, PayGrade, and CreditCardNumber, or just 
go ahead and use strings or integers directly to represent this kind of information?  Of 
course, even if we create such classes, internally they will store integers or strings 
anyway.  Does it help to create such classes, or is it OK to just use the built-in types 
directly? 
 
Creating classes to represent relatively simple abstractions is often the better choice.  
Following are some criteria to help make the decision: 
 

1) Domain Checking – Programs need to validate input values that come from end 
users, files, or other input sources.  This is done by parsing or otherwise 
inspecting the input values to ensure they are valid and lie within acceptable 
ranges.  For example, phone numbers might enter a program as string values, but 
most strings are not valid phone numbers.  Rather than using strings to store 
phone numbers, it would be better to create a PhoneNumber class to store phone 
numbers.  The PhoneNumber class would contain the code necessary to validate 
phone number inputs, probably in a constructor.  Input strings containing phone 
numbers would be passed to the constructor, which would parse the string.  If the 



string contained a valid phone number, the constructor would store it in the object 
for later use.  If the string was not a valid phone number, an exception would be 
thrown.  Domain checking is an excellent reason to create classes to represent 
data values that could otherwise be stored directly as built-in data types. 

 
2) Additional Operations – Creating classes to represent simple data values provides 

a place to put operations that operate on those data types.  For example, URLs 
could be stored directly as strings, but if we do so there will be no place to locate 
URL-related algorithms that may be needed as the program evolves (parsing 
URLs into their component parts, resolving relative URLs, etc.).  Creating a URL 
class, however, would provide an excellent place to put such URL-related 
operations. 

 
3) Code Readability – Creating classes for simple abstractions can enhance a 

program’s readability.  For example, if you see a variable of type String, you 
don’t know much about what the variable represents.  If you see a variable of type 
URL, you know a lot about what it represents (i.e., a URL).  Creating classes for 
simple data types enhances readability because variable, parameter, and return 
types are much more descriptive about what kind of data they represent.  Of 
course, giving good names to variables and parameters will go a long way toward 
telling the reader what kind of data they represent.  Return values, however, don’t 
have names (at least not directly). 

Decomposition 
In addition to abstraction, another fundamental technique for dealing with complexity is 
taking the original problem and dividing it into several smaller sub-problems.  The sub-
problems are smaller and hence less complex than the original, thus making them more 
approachable.  After solving each sub-problem individually, the solutions to the sub-
problems can be combined to create a solution to the original, larger problem.  This 
approach is frequently called “divide and conquer”. 
 
After breaking the original problem into sub-problems, we may find that the sub-
problems themselves are still too complex to solve directly.  In this case, we decompose 
the sub-problems yet again to create second-level sub-problems that are even simpler. 
Sub-problems are divided into smaller and smaller parts until the smallest sub-problems 
are simple enough to solve directly, and thus require no further subdivision.  In effect, we 
create a tree of problems, where the original problem is at the root, and each successive 
level of subdivision adds another level of nodes to the tree.  The solution to each sub-
problem makes use of the solutions to the sub-problems below it.  This approach allows 
us to cope with the inherent complexity of the original problem in bite-size chunks. 
 
Decomposition is strongly related to abstraction.  The solution to each sub-problem is 
abstracted as a class or method.  The solution to the larger problem invokes the 
abstractions which encapsulate the sub-problem solutions.  This results in a concise 
solution to the original problem, and allows the details of the sub-problem solutions to be 
temporarily ignored, thus reducing the cognitive burden of solving the original problem.  



It is through the decomposition process that many of the necessary abstractions are 
discovered (or invented). 

Levels of Design 
 
 
System 
 
 
 
Subsystems 
 
 
 
Packages 
 
 
 
 
Classes 
 
 
Routines 
 
 

 
Decomposition is inherently a top-down process.  At the topmost level we have the entire 
system.  The first level of decomposition divides the system into subsystems, each of 
which represents a major but somewhat independent chunk of the system’s functionality.   
For example, the subsystems for a web browser might be Network Protocols, 
File Viewers, History, Favorites, Printing, etc. 
 
At the next level of decomposition, each subsystem is further subdivided into packages.  
Each package is responsible for implementing a part of the subsystem’s functionality.  
For example, a web browser’s File Viewers subsystem might contain a separate 
package for each different file format that the browser can display (HTML, PDF, XML, 
etc.).  The package corresponding to a particular format would contain the code that 
implements the file viewer for that format. 
 
A package is further decomposed into a collection of one or more classes that together 
implement that package’s functionality.  For example, the web browser’s HTML viewer 
might consist of a dozen different classes. 
 
The functionality of each class is further decomposed into routines which implement the 
operations (or algorithms) of the class.  Significant algorithms are typically decomposed 



further into multiple levels of subroutines.  Decomposition continues until the leaf-level 
subroutines are simple enough to implement directly. 

Hypo- and Hyper- Decomposition 
Many software designers, especially beginners, tend to not decompose things far enough.  
This might be referred to as hypo-decomposition (hypo means deficient).  An extreme 
example of this would be implementing an entire program in a single class.  The one and 
only class would implement all of the functionality for the entire program.  Such a class 
would be an egregious violation of the cohesion principle discussed earlier, which states 
that a class should “do one thing, and do it well”.  One could argue that a one-class 
application is very cohesive because the class does only one thing – it implements the 
entire application!  While there is nothing wrong (and often much right) with having a 
class that represents the entire application (e.g., a WebBrowser class), it is wholly 
inappropriate to actually implement all of the application’s functionality on that one 
class.  Instead, the main class should delegate to other, smaller classes which implement 
various subsets of the program’s functionality.  The main class, then, is primarily a 
delegator (or “driver”), and performs little or no actual work itself other than driving the 
other classes.  In general, if a class represents a large or complex concept, its 
functionality should be decomposed into one or more smaller classes that perform the 
actual work.  Often these second-level classes will also need to be decomposed further 
into even smaller classes.  This decomposition should be repeated until the resulting 
classes are too simple to decompose further. 
 
At the other extreme are those who decompose things too far, which might be called 
hyper-decomposition (hyper means excessive).  This mistake is harder to make and far 
more rare than hypo-decomposition.  When decomposing a system, one must have a 
sense of when they have decomposed far enough.  In general, we have said that a system 
has been decomposed sufficiently when its sub-parts are simple enough to “implement 
directly”.  Everyone has a slightly different sense of when that point has been reached.   
 
Although rare, it is possible to decompose too far.  For example, a 
CreditCardNumber class might be created to represent the concept of a credit card 
number.  This seems like a good design choice.  But, how should a 
CreditCardNumber object store the actual credit card number internally?  A String 
seems like a natural representation for a credit card number (after it has been validated by 
the CreditCardNumber constructor, of course).  Alternatively, it would also be 
possible to store a credit card number as an array of Digit objects.  Most people would 
say that creating a Digit class to store individual digits in a credit card number is 
overkill, and an example of hyper-decomposition. 

Size and Length Metrics 
How shall we know when we have decomposed far enough?  Length metrics, often 
measured in lines of code (LOC), can be helpful in making this determination.  A method 
that contains a single LOC has been decomposed far enough, of course.  A method that 
contains 500 LOC almost certainly has not been decomposed far enough.  Methods that 
have been sufficiently decomposed are usually less than 50 LOC, and in many cases 50 



LOC is still too long.  Maybe 20 LOC would be a better goal.  While there is no “right” 
method length, the basic principle is that when an algorithm has been decomposed 
sufficiently, the resulting subroutines which implement the algorithm tend to be short – 
frequently, very short. 
 
Size metrics such as the number of parameters can also be used to judge how well a 
method has been decomposed.  A method that requires 10 parameters is too complex.  
The problem might be one of insufficient decomposition. 
 
Class size can also provide a clue as to whether or not a class has been decomposed far 
enough.  A class with 50 methods has probably not been decomposed far enough.  Such a 
class is probably doing the work of several classes.  As a result, the class is also not 
cohesive, and should be further subdivided. 
 
Classes with a lot of internal variables are also usually insufficiently decomposed.  If a 
class contains a lot of variables (e.g., 20), there are probably smaller subgroups of those 
variables that are closely related to each other.  These clusters of related variables will 
often suggest new classes to be created, thus further decomposing the original class.  The 
original class would then become a client of the newly discovered classes.   
 
Similarly, a class that contains 5,000 LOC has almost certainly not been decomposed far 
enough.  A class containing 2,000 LOC often requires further decomposition, but not 
always.  Well-designed classes often contain less than 500 LOC, frequently much less 
(but, not always).  There is no “right” class length, but, in general, classes that have been 
decomposed sufficiently tend to be shorter rather than longer. 

Complexity Metrics 
Sometimes length metrics based on LOC measurements don’t tell the whole story.  It is 
possible for two methods with the same length measured in LOC to have radically 
different complexity levels.  For example, imagine two 100-line methods, the first 
containing only straight-line output statements (e.g., println), and the second 
containing complex logic with deeply nested loops and lots of branching.  While these 
methods have the same length, their complexity levels are not even close.  Straight-line 
output statements are readily understandable, while complex logic is far more difficult to 
understand.  Both methods might benefit from further decomposition, but the second one 
demands it. 
 
In general, methods containing complex arithmetic expressions, deeply nested structures, 
and lots of branching should be simplified by breaking up the complex routine into 
simpler subroutines that each perform part of the original routine’s work.  The original 
routine then becomes a driver routine that delegates much of the actual work to its 
subordinates. 
 
Many routines naturally contain multiple sections (or paragraphs) of related statements 
that can be easily factored out into a separate subroutines.  Moving a paragraph of related 
statements to a separate subroutine, giving the new subroutine a good name, and 



replacing the original statements with a call to the new subroutine will do much to 
simplify the original routine.  Consistently applying this technique of algorithm 
decomposition will have a significant positive impact on the quality of your code. 

Algorithm & Data Structure Selection 
A major part of software design is selecting appropriate algorithms and data structures for 
the problem at hand.  Using an algorithm that is O(n3) on data sets that become very large 
will almost certainly be far too slow, regardless of how well we have decomposed and 
abstracted the problem.  Similarly, storing data values as unsorted, linear lists will be far 
too slow if the data set is large and needs to be searched frequently.  Selecting (or 
inventing) algorithms and data structures with good performance characteristics 
(including running time and memory consumption) for the intended application is a 
fundamental design skill.  No amount of decomposition or abstraction will hide a 
fundamentally flawed selection of algorithm or data structure. 

Minimize Dependencies (or, Low Coupling) 
Large systems contain many classes.  As a system is decomposed into its constituent 
classes, it is important to keep each class as independent as possible from the other 
classes in the system.  Classes A and B depend on each other if: 
 

1) Class A invokes a method on class B 
2) Class A accesses the internal state of class B 
3) Class A inherits from class B 
4) Class A has a method parameter of class B 
5) Class A and Class B both access the same global data structure or file 
6) Etc. 

 
Minimizing the number of communication channels and interactions between different 
classes has several benefits: 
 

1) A class with few dependencies on other classes is generally easier to understand 
than a class with many dependencies on other classes (i.e., dependencies increase 
a class’s complexity) 

2) A class with few dependencies on other classes is less prone to ripple effects 
caused by changes or defects in other classes (i.e., dependencies make a system 
harder to modify and debug). 

3) A class with few dependencies on other classes is easier to reuse in a different 
program than a class with many dependencies (i.e., dependencies discourage 
reuse). 

 
Imagine a system in which every class depends on every other class.  Every time any 
class is changed, we must consider the potential impact on all other classes (very 
confusing, indeed).  Similarly, when a class has a defect, the defect will potentially 
impact the behavior of all other classes, thus making it difficult to track down where the 
defect actually resides (again, very confusing). 
 



At the other extreme, imagine a system where there are no dependencies between classes 
(i.e., each class is an island unto itself).  In this case, the software doesn’t do anything.  
Making a program perform useful functions requires a certain level of communication 
(and therefore dependency) between the classes in the system.  The goal is not to remove 
all dependencies, but rather to minimize the number and strength of dependencies. 
 
When two classes must interact, it is desirable to keep the interaction as simple and 
straightforward as possible.  The ideal form of interaction between two classes is through 
simple method calls.  A method call is simple if it has a good name and the data passed 
through the parameter list and return value is easy to understand.  Simple method calls 
have the advantage of being direct and obvious in the code.  Other more indirect forms of 
communication between classes, such as accessing the same global data structure, make 
the dependency less explicit and harder to detect and comprehend.  To the extent 
possible, interactions between classes should be through explicit, well-defined method 
interfaces. 

Separation of Interface and Implementation 
One important technique for minimizing dependencies between classes is maintaining a 
strict separation between a class’s public interface and its internal implementation.  A 
class’s public interface consists of the operations (or methods) through which clients can 
access its services.  In order to use a class, a client needs only to understand the class’s 
public interface.  The details of how the public interface is implemented internally are 
incidental to the client, and should not be accessed or relied upon by the client in any 
way.  The code that implements the public interface, including all variables and 
subroutines that support that code, should not be accessed by clients.  By relying only on 
the details of the public interface, a class’s internal implementation can be changed 
without affecting (i.e., breaking) its clients.  Only changes to the public interface itself 
affect the clients.  The strict separation of interface and implementation goes a long way 
toward minimizing dependencies between classes. 

Information Hiding 
Because the separation of interface and implementation is so central to good software 
design, programming languages often provide features to help enforce this separation.  
Some languages physically separate a class’s public interface and internal 
implementation into separate source files.  Other languages require the designer to 
declare all class features (variables and methods) as “public”, “private”, or “protected”, 
thus preventing clients from accessing private details.  Such language features encourage 
designers to hide as much information as possible from clients, thus reducing 
opportunities for dependency between classes. 
 
A class’s public interface should be as small (or “thin”) as possible, ideally including 
only a small number of methods.  Each public method’s parameters should be as simple 
as possible.  All internal variables should be hidden, and only methods that are directly 
invoked by clients should be made public. 
 



This advice applies even to inheritance relationships.  By making variables “protected”, it 
is easy for a superclass to directly expose its internal variables to its subclasses.  This 
makes the subclasses highly dependent on the internal details of the superclass.  As 
always, this makes it difficult to change the superclass implementation without breaking 
the subclasses.  A designer may choose to make superclasses and subclasses highly 
coupled in this manner, but the downsides of doing so should be considered when making 
this decision.  Another approach would be to define the superclass/subclass interface in 
terms of “protected” methods only (i.e., no “protected” variables), thus reducing the level 
of dependency between superclass and subclass. 
 
Designers should also be careful to ensure that internal implementation details do not 
“leak out” of a class.  For example, a method that performs a search algorithm might be 
named binarySearch.  Unfortunately, the name binarySearch reveals the 
method’s internal implementation.  This choice of name forever binds the method to use 
the binary search algorithm as its implementation.  Alternatively, naming the method 
search would preserve the designer’s freedom to vary the internal algorithm without 
violating the client contract. 
 
Similarly, a grade-keeping program might represent the notion of a class roll with a class 
named StudentLinkedList.  However, doing so betrays the fact that the class uses a 
linked list as the internal data structure for storing a sequence of students.  A better 
choice would be to name the class ClassRoll, thus hiding all details of how students 
are actually stored internally, and preserving freedom to change that representation at 
will. 
 
There are times, however, when a class or method is inherently tied to a particular 
implementation.  In such cases, it is appropriate to name classes or methods in terms of 
their internal details.  For example, a class whose sole purpose is to implement a hash 
table could appropriately be named HashTable because its implementation is an 
inherent part of its existence.  A hash table will always be a hash table, and that will 
never change.  However, clients of the HashTable class should not reveal their internal 
use of HashTable unless that choice is inherent and will never change. 

Avoid Code Duplication 
Another core principle of good software design is that code duplication should be 
strenuously avoided.  Frequently, programs will contain duplicated sections of code, or 
sections of code that are very similar.  For example, searching an array for a particular 
value is a common operation, and this code could easily be duplicated many times 
throughout a program.  Similarly, formatting of date/time values for end-user display is a 
common operation that is often be duplicated throughout a program.  
 
The disadvantages associated with duplication are fairly obvious: 
 

1) If the duplicated code needs to be modified, we must remember to change all N 
copies, and do so correctly. 

2) If the duplicated code contains a bug, the bug will the replicated N times. 



3) Duplication makes the program longer, thus decreasing its maintainability. 
 
If the same or similar code appears in N places, the obvious solution is to isolate the 
duplicated code in one place, and then have all N clients invoke the shared copy.  If all N 
copies are in the same class, the duplicated code can be factored out into a private method 
on that class.  If the N copies are in different classes, the shared copy could be placed on 
one of the client classes, or placed on some other (possibly new) class that provides a 
logical home for the shared code.  Another solution would be to place the shared code in 
a superclass, and then make each client class a subclass of the superclass. 
 
If the duplicated code is similar but not identical, it might be possible to create a generic 
version that will serve the needs of all clients.  If the implementation language provides 
generic types (e.g., C++ templates), a generic type or subroutine will often be a good 
implementation choice for the shared code. 

Design Principles Summary 
1. Abstraction 

a. Naming 
b. Cohesion 
c. Abstracting All the Way 

2. Decomposition 
a. Levels of Design (System, Subsystem, Package, Class, Routine) 
b. Hypo- and Hyper- Decomposition 
c. Size and Length Metrics 
d. Complexity Metrics 

3. Algorithm & Data Structure Selection 
4. Minimize Dependencies (or, Low Coupling) 

a. Separation of Interface and Implementation 
b. Information Hiding 

5. Avoid Code Duplication 
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