
Relational Databases

CS 240

Database Management Systems (DBMS)

 Databases are implemented by software systems called

Database Management Systems (DBMS)

 Commonly used Relational DBMS’s include MySQL, MS

SQL Server, and Oracle

 DBMS’s store data in files in a way that scales to large

amounts of data and allows data to be accessed efficiently

Programmatic vs. Interactive Database

Access

DB

Program

DB Driver

Management Console

Programs can access a

database through APIs

such as ADO.NET or JDBC.

End users can access a

database through an

interactive management

application that allows

them to query and modify

the database.

DB API

Embedded vs. Client/Server

DB

Program

DB Driver

DB

Program

DB Driver

DB Server

Network

Local File Access

Local File Access

Some DBMS’s are Embedded only.

Some are Client/Server only.

Some can work in either mode.

DB APIDB API

Relational Databases

 Relational databases use the relational data model you learned about in CS
236

 In the object-oriented data model we have classes. Objects are instances
of classes. Objects have attributes. Relationships between objects are
represented as pointers.

 In the relational data model, data is stored in tables consisting of columns
and rows. Each row in a table represents an object. The columns in a row
store the object’s attributes.

 Each row has a “key”, which is a unique identifier for that object.
Relationships between objects are represented using keys.

 Taken together, all the table definitions in a database make up the “schema”
for the database.

id name email_address

1 ‘Ann’ ‘ann@cs.byu.edu’

2 ‘Bob’ ‘bob@cs.byu.edu’

3 ‘Chris’ ‘chris@cs.byu.edu’

id title author genre

1 ‘Decision Points’ ‘George W. Bush’ ‘NonFiction’

2 ‘The Work and the Glory’ ‘Gerald Lund’ ‘HistoricalFiction’

3 ‘Dracula’ ‘Bram Stoker’ ‘Fiction’

4 ‘The Holy Bible’ ‘The Lord’ ‘NonFiction’

member_id book_id

1 1

1 2

2 2

2 3

3 3

3 4

member

book

reading

Book Club Schema

Book Club Schema

id name parent_id

1 ‘Top’ Null

2 ‘Must Read’ 1

3 ‘Must Read (New)’ 2

4 ‘Must Read (Old)’ 2

5 ‘Must Read (Really Old)’ 2

6 ‘Optional’ 1

7 ‘Optional (New)’ 6

8 ‘Optional (Old)’ 6

9 ‘Optional (Really Old)’ 6

category

category_id book_id

7 1

3 2

8 3

5 4

category_book

SQL – Structured Query Language

 Language for performing relational database operations

 Create tables

 Delete tables

 Insert rows

 Update rows

 Delete rows

 Query for matching rows

 Much more …

SQL Data Types

 Each column in an SQL table declares the type that

column may contain.

 Character strings

 CHARACTER(n) or CHAR(n) — fixed-width n-character

string, padded with spaces as needed

 CHARACTER VARYING(n) orVARCHAR(n) — variable-

width string with a maximum size of n characters

 Bit strings

 BIT(n) — an array of n bits

 BIT VARYING(n) — an array of up to n bits

SQL Data Types

 Numbers

 INTEGER and SMALLINT

 FLOAT, REAL and DOUBLE PRECISION

 NUMERIC(precision, scale) or DECIMAL(precision, scale)

 Large objects

 BLOB – binary large object (images, sound, video, etc.)

 CLOB – character large object (text documents)

SQL Data Types

 Date and time

 DATE — for date values (e.g., 2011-05-03)

 TIME — for time values (e.g., 15:51:36). The granularity of
the time value is usually a tick (100 nanoseconds).

 TIME WITH TIME ZONE or TIMETZ — the same
as TIME, but including details about the time zone in
question.

 TIMESTAMP — This is a DATE and a TIME put together
in one variable (e.g., 2011-05-03 15:51:36).

 TIMESTAMP WITH TIME ZONE or TIMESTAMPTZ —
the same as TIMESTAMP, but including details about the
time zone in question.

 SQLite stores all data using the following data types

 INTEGER

 REAL

 TEXT

 BLOB

 SQLite supports the standard SQL data types by mapping

them onto the INTEGER, REAL, TEXT, and BLOB types

SQLite Data Types

Creating and Deleting Tables

 CREATE TABLE

 Book Club Example

 NULL

 Primary Keys

 DROP TABLE

 Book Club Example

create-table.txt
drop-table.txt

Modeling Object Relationships

 Connections between objects are represented using

foreign keys

 Foreign Key: A column in table T1 stores primary keys of

objects in table T2

 Book Club Examples

 Reading table stores Member and Book keys

 Category table stores parent Category key

 Category_Book table stores Category and Book keys

create-table.txt

Modeling Object Relationships

 Types of Object Relationships

 One-to-One

 A Person has one Head; A Head belongs to one Person

 Either table contains a foreign key referencing the other table

 One-to-Many

 A Category has many sub Categories; a Category has one parent

Category

 The “Many” table contains a foreign key referencing the “One” table

 Many-to-Many

 A Member has read many Books; A Book has been read by many

Members

 A Category contains many Books; A Book belongs to many Categories

 Create a “join table” whose rows contain foreign keys of related objects

16

Modeling Inheritance Relationships

 How do we map the following Class Model to an RDBMS

InterestBearingAccount

rate_ : double
termDays_ : int
minimumBalance_ : double

CheckingAccount

checkFee_ double

Owner

name_ : String
taxId_ : String

Account

id_ : String
balance_ : double

owner_

1 *

17

Horizontal Partitioning

 Each concrete class is mapped to a table

InterestBearingAccount

rate_ : double
termDays_ : int
minimumBalance_ : double

CheckingAccount

checkFee_ double

Owner

name_ : String
taxId_ : String

Account

id_ : String
balance_ : double

owner_

1 *

OwnerTable

name taxId

InterestBearingAccountTable

id balance ownerId rate termDays

CheckingAccountTable

id balance ownerId checkFee

18

Vertical Partitioning

 Each class is mapped to a table

InterestBearingAccount

rate_ : double
termDays_ : int
minimumBalance_ : double

CheckingAccount

checkFee_ double

Owner

name_ : String
taxId_ : String

Account

id_ : String
balance_ : double

owner_

1 *

AccountTable

id balance ownerId

OwnerTable

name taxId

InterestBearingAccountTable

id rate termDays

CheckingAccount

id checkFee

19

Unification

 Each sub-class is mapped to the same table

InterestBearingAccount

rate_ : double
termDays_ : int
minimumBalance_ : double

CheckingAccount

checkFee_ double

Owner

name_ : String
taxId_ : String

Account

id_ : String
balance_ : double

owner_

1 *

AccountTable

id acctType balance ownerId rate termDays checkFee

OwnerTable

name taxId

20

RDBMS Mapping

 Horizontal Partitioning

 entire object within one table

 only one table required to activate
object

 no unnecessary fields in the table

 must search over multiple tables
for common properties

 Vertical Partitioning

 object spread across different
tables

 must join several tables to activate
object

 Vertical Partitioning (cont.)

 no unnecessary fields in each table

 only need to search over parent
tables for common properties

 Unification

 entire object within one table

 only one table required to activate
object

 unnecessary fields in the table

 all sub-types will be located in a
search of the common table

Inserting Data into Tables

 INSERT

 Book Club Example

insert.txt

Updates

UPDATE Table

SET Column = Value, Column = Value, …

WHERE Condition

UPDATE member

SET name = ‘Chris Jones’,

email_address = ‘chris@gmail.com’

WHERE id = 3

Change a member’s information

UPDATE member

SET email_address = ‘’

Set all member email addresses to empty

Deletes

DELETE FROM Table

WHERE Condition

DELETE FROM member

WHERE id = 3

Delete a member

DELETE FROM book

Delete all books

DELETE FROM reading

WHERE member_id = 3

Delete all readings for a member

Queries

SELECT Column, Column, …

FROM Table, Table, …

WHERE Condition

Queries

id title author genre

1 ‘Decision Points’ ‘George W. Bush’ ‘NonFiction’

2 ‘The Work and the Glory’ ‘Gerald Lund’ ‘HistoricalFiction’

3 ‘Dracula’ ‘Bram Stoker’ ‘Fiction’

4 ‘The Holy Bible’ ‘The Lord’ ‘NonFiction’

book

SELECT *

FROM book

id title author genre

1 ‘Decision Points’ ‘George W. Bush’ ‘NonFiction’

2 ‘The Work and the Glory’ ‘Gerald Lund’ ‘HistoricalFiction’

3 ‘Dracula’ ‘Bram Stoker’ ‘Fiction’

4 ‘The Holy Bible’ ‘The Lord’ ‘NonFiction’

result

List all books

Queries

id title author genre

1 ‘Decision Points’ ‘George W. Bush’ ‘NonFiction’

2 ‘The Work and the Glory’ ‘Gerald Lund’ ‘HistoricalFiction’

3 ‘Dracula’ ‘Bram Stoker’ ‘Fiction’

4 ‘The Holy Bible’ ‘The Lord’ ‘NonFiction’

book

SELECT author, title

FROM book

WHERE genre = ‘NonFiction’

author title

‘George W. Bush’ ‘Decision Points’

‘The Lord’ ‘The Holy Bible’

result

List the authors and titles of all non-fiction books

Queries

id name parent_id

1 ‘Top’ Null

2 ‘Must Read’ 1

3 ‘Must Read (New)’ 2

4 ‘Must Read (Old)’ 2

5 ‘Must Read (Really Old)’ 2

6 ‘Optional’ 1

7 ‘Optional (New)’ 6

8 ‘Optional (Old)’ 6

9 ‘Optional (Really Old)’ 6

category

SELECT id, name, parent_id

FROM category

WHERE parent_id = 1

List the sub-categories of category ‘Top’

id name parent_id

2 ‘Must Read’ 1

6 ‘Optional’ 1

result

Queries

SELECT member.name, book.title

FROM member, reading, book

WHERE member.id = reading.member_id AND

book.id = reading.book_id

List the books read by each member

JOIN

member.

id

member.

name

member.

email_address

reading.

member_id

reading.

book_id

book.

id

book.

title

book.

author

book.

genre

1 ‘Ann’ ‘ann@cs.byu.edu’ 1 1 1 ‘Decision

Points’

‘George W.

Bush’

‘NonFiction’

1 ‘Ann’ ‘ann@cs.byu.edu’ 1 1 2 ‘The Work

and the

Glory’

‘Gerald Lund’ ‘HistoricalFicti

on’

1 ‘Ann’ ‘ann@cs.byu.edu’ 1 1 3 ‘Dracula’ ‘Bram Stoker’ ‘Fiction’

1 ‘Ann’ ‘ann@cs.byu.edu’ 1 1 4 ‘The Holy

Bible’

‘The Lord’ ‘NonFiction’

… … … … … … … … …

member X reading X book (3 x 6 x 4 = 72 rows)

name title

‘Ann’ ‘Decision Points’

‘Ann’ ‘The Work and the Glory’

‘Bob’ ‘The Work and the Glory’

‘Bob’ ‘Dracula’

‘Chris’ ‘Dracula’

‘Chris’ ‘The Holy Bible’

result

Queries

SELECT member.name, book.title

FROM member, reading, book

WHERE member.id = reading.member_id AND

book.id = reading.book_id

List the books read by each member

 By default, each SQL statement is executed in a

transaction by itself

 Transactions are most useful when they consist of multiple

SQL statements, since you want to make sure that either

all of them or none of them succeed

 For a multi-statement transaction,

 BEGIN TRANSACTION;

 SQL statement 1;

 SQL statement 2;

 …

 COMMIT TRANSACTION; or ROLLBACK TRANSACTION;

Database Transactions

 Database transactions have the ACID properties

 A = Atomic

 Transactions are “all or nothing”. Either all of the operations in a
transaction are performed, or none of them are. No partial execution.

 C = Consistent

 All defined integrity constraints are enforced

 I = Isolated

 When multiple transactions execute concurrently, the database is kept
in a consistent state.

 Concurrent transactions T1 and T2 are “serialized”. The final effect will
be either T1 followed by T2 or T2 followed by T1.

 Concurrent transactions are isolated from each other. Changes made
by a transaction are not visible to other transactions until the
transaction commits.

 D = Durable

 The changes made by a committed transaction are permanent.

Database Transactions

Programmatic Database Access -

accessing a database from Java

 Load database driver

 Open a database connection

 Start a transaction

 Execute queries and/or updates

 Commit or Rollback the transaction

 Close the database connection

 Retrieving auto-increment ids

Load Database Driver

import java.sql.*;

try {

final String driver = "org.sqlite.JDBC";

Class.forName(driver);

}

catch(ClassNotFoundException e) {

// ERROR! Could not load database driver

}

Open a Database Connection / Start a

Transaction

import java.sql.*;

String dbName = "db" + File.separator + "bookclub.sqlite";

String connectionURL = "jdbc:sqlite:" + dbName;

Connection connection = null;

try {

// Open a database connection

connection = DriverManager.getConnection(connectionURL);

// Start a transaction

connection.setAutoCommit(false);

}

catch (SQLException e) {

// ERROR

}

Execute a Query
PreparedStatement stmt = null;

ResultSet rs = null;

try {

String sql = "select id, title, author, genre from book";

stmt = connection.prepareStatement(sql);

rs = stmt.executeQuery();

while (rs.next()) {

int id = rs.getInt(1);

String title = rs.getString(2);

String author = rs.getString(3);

Genre genre = convertGenre(rs.getString(4));

}

}

catch (SQLException e) {

// ERROR

}

finally {

if (rs != null) rs.close();

if (stmt != null) stmt.close();

}

Execute an Insert, Update, or Delete
PreparedStatement stmt = null;

try {

String sql = "update book " +

"set title = ?, author = ?, genre = ? " +

"where id = ?";

stmt = connection.prepareStatement(sql);

stmt.setString(1, book.getTitle());

stmt.setString(2, book.getAuthor());

stmt.setString(3, book.getGenre());

stmt.setInt(4, book.getID());

if (stmt.executeUpdate() == 1)

// OK

else

// ERROR

}

catch (SQLException e) {

// ERROR

}

finally {

if (stmt != null) stmt.close();

}

Commit or Rollback the Transaction / Close

the database connection

try {

if (ALL DATABASE OPERATIONS SUCCEEDED) {

connection.commit();

}

else {

connection.rollback();

}

}

catch (SQLException e) {

// ERROR

}

finally {

connection.close();

}

connection = null;

Retrieving Auto-increment IDs
PreparedStatement stmt = null;

Statement keyStmt = null;

ResultSet keyRS = null;

try {

String sql = "insert into book (title, author, genre) values (?, ?, ?)";

stmt = connection.prepareStatement(sql);

stmt.setString(1, book.getTitle());

stmt.setString(2, book.getAuthor());

stmt.setString(3, book.getGenre());

if (stmt.executeUpdate() == 1) {

keyStmt = connection.createStatement();

keyRS = keyStmt.executeQuery("select last_insert_rowid()");

keyRS.next();

int id = keyRS.getInt(1); // ID of the new book

book.setID(id);

}

else

// ERROR

}

catch (SQLException e) {

// ERROR

}

finally {

if (stmt != null) stmt.close();

if (keyRS != null) keyRS.close();

if (keyStmt != null) keyStmt.close();

}

Setting Up SQLite in Eclipse

 Use SQLite – already installed on the linux machines

 Download one of the following two SQLite JDBC drivers

 sqlite-jdbc-3.7.2.jar

 Store it wherever you like

http://students.cs.byu.edu/~cs240ta/fall2012/powerpoints/code/database/sqlite-jdbc-3.7.2.jar

At Least Two Methods to Get it Working

 Both basically put the jar you just downloaded in the

build path for your project.

 Technique 1:Right click on your project icon in the

Package Explorer. In the menu select Build Path and then

Add External Archives. Use the folder explorer that appears

to find the jar file you downloaded and select “open” and

it will be made part of your program’s build path.

At Least Two Methods to Get it Working

 Technique 2:

 Select Run at the top of the page.

 Select Run Configurations… about 5 lines down.

 Select the Classpath tab in the row of tabs underneath the

name of your main routine.

 In the Classpath window select User Entries

 Select Add External Jars… from the right column

 Now navigate to the folder where you stored your sqlite jdbc

jar file

 Select the jar file

 Hit the Open button

 Then select Apply button

Installing SQLite3 on Linux

 Linux

 Download the source file from (usually the second file listed)

http://www.sqlite.org/download.html

 tar –xzvf the downloaded file

 cd to the new folder

 ./configure

 make

 make install

http://www.sqlite.org/download.html

Installing SQLite3 on a Mac

 On a recent OS you don’t have to, it is already there

Installing SQLite3 on Windows

 Download the first two zip files from the section labeled

Precompiled Binaries for Windows.

 Unzip them and place the three resulting files in

C:\WINDOWS\system32 (or any directory on you PATH.

 Alternative: I created a new directory called SQLite in

C:\Program Files (x86) and placed the three files in that

location. I then extended the PATH variable to search that

location

http://sqlite.org/download.html

Adding the SQLite Manager to Firefox

 You can manage an SQLite database using the command line

and text-based SQLite commands, but, it is easier to the

SQLite Manager extension you can get for Firefox.

 First, start Firefox

 Then go to

https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/

and hit the green “Add to Firefox” button and install

the extension.

 After it is installed you can click on the “SQLite Manager”

under the Tools tab at the very top.

https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/

