
Unit Testing



F-22 Raptor Fighter



F-22 Raptor Fighter
• Manufactured by Lockheed Martin & Boeing

• How many parts does the F-22 have?



F-22 Raptor Fighter
• What would happen if Lockheed assembled an F-

22 with "untested" parts (i.e., parts that were 
built but never verified)?

• It wouldn't work, and in all likelihood you would 
never be able to make it work
– Cheaper and easier to just start over



Managing implementation complexity

• Individual parts should be verified before being 
integrated with other parts

• Integrated subsystems should also be verified 

• If adding a new part breaks the system, the problem 
must be related to the recently added part

• Track down the problem and fix it

• This ultimately leads to a complete system that works



2 approaches to programming

• Approach #1
– "I wrote ALL of the code, but when I tried to 

compile and run it, nothing seemed to work!“

• Approach #2
– Write a little code (e.g., a method or small class)
– Test it
– Write a little more code
– Test it
– Integrate the two verified pieces of code
– Test it
– …



Unit testing
• Large programs consist of many smaller pieces

– Classes, methods, packages, etc.

• "Unit" is a generic term for these smaller pieces

• Three important types of software testing are:
– Unit Testing (test units in isolation)
– Integration Testing (test integrated units)
– System Testing (test entire system that is fully integrated)

• Unit Testing is done to test the smaller pieces in 
isolation before they are combined with other 
pieces
– Usually done by the developers who write the code



What unit tests do

• Unit tests create objects, call methods, and verify that 
the returned results are correct

• Actual results vs. Expected results

• Unit tests should be automated so that they can be run 
frequently (many times a day) to ensure that changes, 
additions, bug fixes, etc. have not broken the code
– Regression testing

• Notifies you when changes have introduced bugs, and 
helps to avoid destabilizing the system



Test driver program
• The tests are run by a "test driver", which is a 

program that just runs all of the unit test cases

• It must be easy to add new tests to the test 
driver

• After running the test cases, the test driver 
either tells you that everything worked, or 
gives you a list of tests that failed

• Little or no manual labor required to run tests 
and check the results



Android testing framework

• Android provides a framework for writing automated unit 
tests
– Based on the popular JUnit unit testing framework

• There are two types of Android unit tests
– Local Unit Tests

• These tests depend only on standard Java classes, and so can be run on the 
development computer instead of on an Android device

• You will create local unit tests for the Family Map Server project

– Instrumented Unit Tests
• These tests depend on Android-specific classes, and so must be run on an 

Android device

• You will create instrumented unit tests for the Family Map Client project



Android local unit tests

• Official Documentation

• Can run on the development computer without a 
device or emulator

• Module’s primary source code is located in the 
folder 
– <module>/src/main/java/<package>

• Local unit test code is located in the folder
– <module>/src/test/java/<package>

https://developer.android.com/training/testing/unit-testing/local-unit-tests.html


Android local unit tests

• Example: junit-example (on web site)

• “spellcheck” module contains code for web-
based spelling checker

• “Real” classes are in:
– src/main/java/spellcheck/*.java

– src/main/java/dataaccess/*.java

• “Test” classes are in:
– src/test/java/spellcheck/*.java

– src/test/java/dataaccess/*.java



Android local unit tests

• Local test classes are written using the JUnit 4 
unit test framework

• Include the following in app/build.gradle
dependencies {

…
testCompile 'junit:junit:4.12'

}

• Import JUnit 4 classes
import org.junit.*;

import static org.junit.Assert.*;



Android local unit tests

• Test classes are just regular classes (no special 
superclass)

• Test methods may have any name (need not be test*), 
but must have the @Test annotation on them

• Common initialization code can be placed in a method 
(any name) with the @Before annotation

• Common cleanup code can be placed in a method (any 
name) with the @After annotation

• Use JUnit assert*methods to implement test 
cases

• JUnit 4 Assert Method Documentation

http://junit.sourceforge.net/javadoc/org/junit/Assert.html


Running local unit tests
(from Android Studio)

• No device or emulator is needed

• To run a single test class, in the “Project” tool 
window right-click on a test class name, and 
select “Run Tests” or “Debug Tests”

• To run all of your local unit tests, right-click on 
the “test/java” folder, and select “Run All 
Tests” or “Debug All Tests”



Running local unit tests 
(from command-line)

• Write a test driver class whose “main” method 
invokes the org.junit.runner.JUnitCore class to 
run your unit tests

• Run your test driver program from the 
command-line:
java –cp build\classes\main;build\classes\test;libs\junit-
4.12.jar;libs\hamcrest-all-1.3.jar;libs\sqlite-jdbc-3.16.1.jar TestDriver

• For the Family Map Server project, you will 
create a bash shell script that will compile and 
run your unit tests from the command-line



JUnit 4 unit testing framework

• JUnit 4 Documentation

• Use JUnit 4 annotations to mark test methods

Annotation Description

@Test public void method()
The annotation @Test identifies that a 
method is a test method. 

@Before public void method()

Will execute the method before each test. 
This method can prepare the test 
environment (e.g. read input data, 
initialize the class). 

@After public void method()

Will execute the method after each test. 
This method can cleanup the test 
environment (e.g. delete temporary data, 
restore defaults). 

http://junit.sourceforge.net/javadoc/


JUnit 4 unit testing framework
• Use JUnit 4 annotations to mark test methods

Annotation Description

@BeforeClass public void method()

Will execute the method once, before 
the start of all tests. This can be used 
to perform time intensive activities, 
for example to connect to a database. 

@AfterClass public void method()

Will execute the method once, after 
all tests have finished. This can be 
used to perform clean-up activities, 
for example to disconnect from a 
database. 

@Test (expected = Exception.class)
Fails, if the method does not throw 
the named exception. 

@Test(timeout=100)
Fails, if the method takes longer than 
100 milliseconds. 



Database Unit Tests

• When writing unit tests for your database 
code, there are additional things to think 
about

• Put database driver JAR file on the class path

• Each unit test should start with a pristine 
database so prior tests have no effect
– Can re-create tables before each test

– Or, you can “rollback” the effects of each test so 
they are undone and don’t affect later tests


