

Google Maps Troubleshooting

Before you go through the troubleshooting guide below, make sure that you’ve consulted
the class ​FAQ​, Google’s ​Map Activity Tutorial​, as well as these helpful resources from our
professors:

● General Google Maps Information:
https://faculty.cs.byu.edu/~barker/cs240/notes/22a-maps/

● Basic Map Fragment Example:
https://students.cs.byu.edu/~cs240ta/fall2018/jones_files/?path=MapFragment2/

If you’ve consulted the resources above and are still having trouble with your map, run through
the following troubleshooting steps to resolve the issue.

https://students.cs.byu.edu/~cs240ta/fall2018/faqs/
https://developers.google.com/maps/documentation/android-sdk/start
https://faculty.cs.byu.edu/~barker/cs240/notes/22a-maps/
https://students.cs.byu.edu/~cs240ta/fall2018/jones_files/?path=MapFragment2/

2

 Maps Troubleshooting Solutions
The following are listed roughly in order corresponding to how easy the solution is plus how
commonly it fixes the issue.

1) Make sure your google maps API key is valid
2) Disable restrictions on maps API key
3) Create a new API key
4) Ensure google maps android api v2 is enabled on the google developer console
5) Add locations permissions to manifest
6) Downgrade Google Play services to ​11.0.4
7) If SDK version is below 27, Upgrade SDK to version 27 or higher
8) Override Fragment lifecycle methods in fragment and call them on your

SupportMapFragment/MapView
9) Use a different emulator (Nexus 5/6X with Google Play)
10) Modify Android Manifest for Android 28
11) Run on a real device
12) Sling some Google-fu

Top

3

 Make sure your google maps API key is valid

● Visit ​https://console.developers.google.com

● Select the “​credentials​” tab on the left side

● Ensure the API key listed matches what you’re using in your project

Top

https://console.developers.google.com/

4

 Disable restrictions on maps API key

● Visit ​https://console.developers.google.com

● Select the “​credentials​” tab on the left side

● Click on the “Edit” icon for your API key

● On the edit page, set the application restrictions to “none”

● Finally, hit “save” at the bottom of the edit page

Top

https://console.developers.google.com/

5

 Create a new API key

● Visit ​https://console.developers.google.com

● Click the dropdown at the top left of the screen.

● In the resulting window, re-select your current project

● Next, select the “​credentials​” tab on the left side

● Select the blue button that says “​Create Credentials​”, and then select “​API key​” from the

dropdown menu

● Copy the generated API key and use it in your Android Studio Project

Top

https://console.developers.google.com/

6

 Ensure Google Maps Android API v2 is enabled

● Visit ​https://console.developers.google.com

● Select the “​dashboard​” tab on the left side

● Click on “​Enable APIs and Services​” at the top of the page

● Enter “​Maps SDK for Android​” into the search bar, and select the Android Maps SDK

● If your Maps API is enabled, you will see a

header like this ---->

● Otherwise, your Maps is ​disabled​. Click the

“​Enable​” button to activate the API.

Top

https://console.developers.google.com/

7

 Add locations permissions to manifest

● First, make sure your project view is in the “​Android​” mode. Change this by selecting the

corresponding option in the drop down menu just above the “​project​” pane.

● Next, open “​app​” -> “​manifests​” -> “​androidmanifest.xml​”

● Add the following permissions to your android manifest, just ​above​ the start of the

“​<application​” tag:
<​uses-permission ​​android​​:name=​​"android.permission.INTERNET"​​/>
<​uses-permission ​​android​​:name=​​"android.permission.ACCESS_NETWORK_STATE"​​/>
<​uses-permission ​​android​​:name=​​"android.permission.ACCESS_FINE_LOCATION"​​/>
<​uses-permission ​​android​​:name=​​"android.permission.ACCESS_COARSE_LOCATION"​​/>

Top

8

 Downgrade Google Play services to ​11.0.4

● First, make sure your project view is in the “​Android​” mode. Change this by selecting the

corresponding option in the drop down menu just above the “​project​” pane.

● Next, open “​Gradle Scripts​” -> “​build.gradle (Module: app)​”
● Find the line that reads:

implementation ​'com.google.android.gms:play-services-maps:Ver.Num.Here'
● Change the version number to 11.0.4, so the line reads

implementation ​'com.google.android.gms:play-services-maps:11.0.4'

Top

9

 If below SDK 27, Upgrade Project + Emulator SDK to version 27 or higher

● To check your APK version, check in the “​build.gradle​” file of the App module.
● Make sure your project view is in the “​Android​” mode. Change this by selecting the

corresponding option in the drop down menu just above the “​project​” pane.

● Next, open “​Gradle Scripts​” -> “​build.gradle (Module: app)​”
● Find the options that say “​compileSdkVersion​” and “​targetSdkVersion​”, they should

have the same number listed for both.
● If this number is lower than 27, raise it so your SDK version is 27.
● Clean your project by selecting “​Build​” -> “​Clean Project​” from the application menu.

● You should also change your emulator to match your SDK version if applicable. To do this,

follow the steps listed for: ​Using a Different Emulator

Top

10

 Override Fragment lifecycle methods and call them on your
SupportMapFragment/MapView

**In the MapFragment you created, first make sure your ​SupportMapFragment​ or ​MapView
widget is a class variable, that way we can access it throughout the file.

● In the MapFragment you created (e.g. MapFragment.java), override the following methods:

○ onStart
○ onStop
○ onPause
○ onDestroy
○ onResume
○ onLowMemory

(An easy way to override methods in android studio is simply to start typing the name of
the method, and let your IDE’s autocomplete generate the method stub.)

● You should now have several method bodies that look like this:
@Override
public void ​​lifeCycleMethod() {
 ​super​​.lifeCycleMethod();
}

● Inside each of your new methods, call the corresponding method on your
SupportMapFragment​ or ​MapView​ widget. You may want to add a check for null to protect
against exceptions.

● Your method bodies should now look like this:
@Override
public void ​​lifeCycleMethod() {
 ​super​​.lifeCycleMethod();
 ​if ​​(​mSupportMapFrag_or_MapView ​​!= ​null​​) {
 ​mSupportMapFrag_or_MapView​​.lifeCycleMethod();
 }
}

● Clean your project by selecting “​Build​” -> “​Clean Project​” from the application menu.

Top

11

 Use a different emulator (Nexus 5/6X with Google Play)

● Open the AVD Manager by selecting “​Tools​” -> “​AVD Manager​” from the application menu
● This will list your currently created emulators. If your emulator API level is already above 27

and you are using a Nexus 5/6X with google play, you are ok.

● If your API level is ​below 27​, select “​Create Virtual Device​” at the bottom of this window.
● Select “​Nexus 5X​” as your target device, and click “​Next​”
● Select a system image from the options. 27 or 28 will do. (You may need to download the

image first)

● Select “​Next​”, then “​Finish​” to create your emulator

Top

12

 Modify Android Manifest for Android 28

**The following maps fix is only applicable for SDK ​versions 28 and above.​ Your SDK version
can be found inside your App module’s “​build.gradle​” file.

● First, make sure your project view is in the “​Android​” mode. Change this by selecting the

corresponding option in the drop down menu just above the “​project​” pane.

● Next, open “​app​” -> “​manifests​” -> “​androidmanifest.xml​”

● Add the following flag to your manifest, inside the “​<application​” tag (i.e. where your

activities are declared):
<​uses-library ​​android​​:name = ​​"org.apache.http.legacy" ​​android​​:required = ​​"false" ​​/>

Top

13

 Run on a real device

Sometimes Map problems are caused by emulator issues that vary from person to
person. In these cases running your app on a real device is a great option. For more
information on how to run your app on a real device, consult “​Chapter 2: Running on a Device​”
in the BigNerdRanch Android book, found here:
https://www.oreilly.com/library/view/android-programming-the/9780134706061/

Top

https://www.oreilly.com/library/view/android-programming-the/9780134706061/

14

 Google is your best friend

If all else fails and your map is still giving you trouble, don’t worry - you’re not alone.

Many others have ran into issues with the google map across the android development
community, so there is a lot of discussion on the topic online. Take your own project’s situation
and symptoms into mind and use your google skills to track down a solution!

Top

