Discussion #33

Adjacency Matrices
Topics

• Adjacency matrix for a directed graph
• Reachability
• Algorithmic Complexity and Correctness
 – Big Oh
 – Proofs of correctness for algorithms
 • Loop invariants
 • Induction
Adjacency Matrix

- Definition: Let $G = (V, E)$ be a simple digraph. Let $V = \{v_1, v_2, \ldots v_n\}$ be the vertices (nodes). Order the vertices from v_1 to v_n. The $n \times n$ matrix A whose elements are given by

$$a_{ij} = \begin{cases} 1, & \text{if } (v_i, v_j) \in E \\ 0, & \text{otherwise} \end{cases}$$

is the adjacency matrix of the graph G.

- Example:
Space: Adjacency Lists vs. Matricies

- Space \((n\) vertices and \(m\) edges)
 - matrix: \(n^2 + n \times \) (vertex-name size)
 - = matrix size + header size
 - matrix can be bits, but bits are not directly addressable
 - list: \(n \times \) (header-node size) + \(m \times \) (list-node size)

- Sparse: few edges — 0 in the extreme case
 - Matrix — fixed size: so no size benefit
 - List — variable size: as little as \(n \times \) (vertex-node size)

- Dense: many edges — \(n^2\) in the extreme case
 - Matrix — fixed size: so no size loss
 - List — variable size: as much as \(n \times \) (header-node size) + \(n^2 \times \) (list-node size)
Operations: Adjacency Lists vs. Matricies

- Operations depend on sparse/dense and what’s being done.
- Examples \((n\) nodes and \(m\) edges)
 - Is there an arc from \(x\) to \(y\)?
 - Matrix: \(O(1)\) — check value at \((x, y)\)
 - List: \(O(n)\) — index to \(x\), traverse list to \(y\) or end
 - Get successor nodes of a node.
 - Matrix: \(O(n)\) — scan a row
 - List: \(O(n)\) — traverse a linked list
 - Get predecessor nodes of a node.
 - Matrix: \(O(n)\) — scan a column
 - List: \(O(n+m)\) — traverse all linked lists, which could be as bad as \(O(n+n^2) = O(n^2)\).
Powers of Adjacency Matrices

- Powers of adjacency matrices: A^2, A^3, \ldots
- Can compute powers
 - Using ordinary arithmetic:
 \[
 a_{ij} = \sum_{k=1}^{n} a_{ik} \cdot a_{kj}
 \]
 - Using Boolean arithmetic:
 \[
 a_{ij} = \bigvee_{k=1}^{n} a_{ik} \land a_{kj}
 \]
Powers Using Ordinary Arithmetic

\[
A = \begin{bmatrix}
1 & 0 & 1 & 0 & 0 \\
2 & 0 & 0 & 1 & 1 \\
3 & 0 & 0 & 0 & 1 \\
4 & 0 & 1 & 0 & 1 \\
\end{bmatrix}
\]

\[
A^2 = \begin{bmatrix}
1 & 0 & 0 & 1 & 1 \\
2 & 0 & 1 & 0 & 2 \\
3 & 0 & 1 & 0 & 1 \\
4 & 0 & 1 & 1 & 2 \\
\end{bmatrix}
\]

\[
A^3 = \begin{bmatrix}
1 & 0 & 1 & 0 & 2 \\
2 & 0 & 2 & 1 & 3 \\
3 & 0 & 1 & 1 & 2 \\
4 & 0 & 2 & 1 & 4 \\
\end{bmatrix}
\]

\[
<1,2,4> \\
<2,3,4> <2,4,4> \\
<3,4,4> \\
<4,2,4> <4,4,4>
\]

\[
<1,2,3,4> <1,2,4,4> \\
<2,4,2,4> <2,4,4,4> <2,3,4,4> \\
<3,4,2,4> <3,4,4,4> \\
<4,2,3,4> <4,2,4,4> <4,4,2,4> <4,4,4,4>
\]
The element in the ith row and the jth column of A^n is equal to the number of paths of length n from the ith node to the jth node.
Powers Using Ordinary Arithmetic
(continued…)

\[
A = \begin{bmatrix}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 \\
3 & 0 & 0 & 0 \\
4 & 0 & 1 & 0 \\
\end{bmatrix}
\]

\[
A^1 + A^2 = \# \text{ of ways in 2 or fewer}
\]

\[
A^1 + A^2 + A^3 = \# \text{ of ways in 3 or fewer}
\]

\[
A^1 + A^2 + A^3 + A^4 = \# \text{ of ways in 4 or fewer}
\]

\[
A^2 = \begin{bmatrix}
1 & 2 & 3 & 4 \\
1 & 0 & 0 & 1 \\
2 & 0 & 1 & 0 \\
3 & 0 & 1 & 0 \\
4 & 0 & 1 & 0 \\
\end{bmatrix}
\]

\[
A^3 = \begin{bmatrix}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 0 \\
2 & 0 & 2 & 1 \\
3 & 0 & 1 & 1 \\
4 & 0 & 2 & 1 \\
\end{bmatrix}
\]

Discussion #31

9/12
Powers Using Boolean Arithmetic

- Using Boolean arithmetic, we compute reachability.
- We can compute the paths of length 2 by A^2, 3 by A^3… and of length n by A^n. Since the longest possible path we care about for reachability is n, we obtain all paths by $A \lor A^2 \lor A^3 \lor \ldots \lor A^n$.
- The reachability matrix is the transitive closure of A.
- Algorithm:

\[
R = A;
\]
\[
\text{for } (i = 2 \text{ to } n) \\
\{ \text{ compute } A^i; \\
R = R \lor A^i; \\
\}
\]

\[
\begin{align*}
\text{for } (j = 1 \text{ to } n) \\
\{ \text{ for } (k = 1 \text{ to } n) \\
\{ a_{jk}^i = 0; \\
\text{ for } (m = 1 \text{ to } n) \\
\{ a_{jk}^i = a_{jk}^i \lor (a_{jm}^{i-1} \land a_{mk}^1); \\
\}
\}
\}
\]
Reachability

\[
A = \begin{bmatrix}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 \\
3 & 0 & 0 & 0 \\
4 & 0 & 1 & 0
\end{bmatrix}
\]

\[
A \lor A^2 = \begin{bmatrix}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 1 \\
2 & 0 & 1 & 1 \\
3 & 0 & 1 & 0 \\
4 & 0 & 1 & 1
\end{bmatrix}
\]

\[
A^2 \lor A^3 = \begin{bmatrix}
1 & 2 & 3 & 4 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1
\end{bmatrix}
\]

\[
A^3 = \begin{bmatrix}
1 & 2 & 3 & 4 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{bmatrix}
\]

1st iteration 2nd iteration 3rd iteration
Timeout … for an Important CS Theme

• Programmatic problem solving
 – Understand — gather information, analyze, specify
 – Solve
 • Choose “proper” data structures and algorithms
 • Implement
 • “Prove” correct
 Test ← Exhaustively? Mathematical proof? → Prove
 Reason & Test
 – Optimize
 • Tweak? (Often not much here — compilers optimize)
 • Can I reduce the Big Oh?

• Example
 – Can we prove that the reachability algorithm works?
 – Can we find a faster algorithm to compute reachability?
The algorithm terminates.

- Loops terminate: each has a descending seq. on a well-founded poset.
- Example:

```plaintext
R = A;
for (i = 2 to n) {
    compute A_i;
    R = R \lor A_i;
}
```

The sequence \(n - i \) for \(i = 2 \) to \(n \) is a descending sequence on the natural numbers. (For our example it is \(<2, 1, 0>\).)

The algorithm produces the correct result.

- No loops: Reason that steps lead to the desired conclusion.
- Loops:
 - Find an appropriate loop invariant — a T/F condition that stays the same as the loop executes, is based on the number of iterations, and leads to the conclusion we need.
 - Prove by induction that the loop invariant holds as the loop executes.
Loop Invariant Example: \[\sum_{i=1}^{n} A[i] \]

\[\text{sum} = 0 \]
\[\text{for } i = 1 \text{ to } n \]
\[\text{sum} = \text{sum} + A[i] \]

Induction proof:

Basis: \(k = 0 \) (initialization, before the loop begins), \(\text{sum} = 0 \), which is the sum after 0 iterations. (Or, we could start with \(k=1 \): After 1 iteration, \(\text{sum} = A[1] \).)

Loop Invariant Example: Selection Sort

-- A is an array of n distinct integers
for i = 1 to n
find location j of the smallest integer in A[i] … A[n]
 swap A[i] and A[j]

Loop invariant:

Induction proof:

Basis: k = 0 (initialization, before the loop begins), A is an array of n distinct integers which may or may not be sorted. (Or, we could start with k=1: After 1 iteration A[1] is sorted \& A[1] < all of A[1+1], …, A[n].)

Proof of Correctness for Reachability

\[R = A; \]
\[\text{for (i = 2 to n)} \]
\[\{ \text{compute } A^i; \]
\[R = R \lor A^i; \]
\[\} \]

- Loop invariant: After \(z \) outer loops, \(a_{xy} = 1 \) iff \(y \) is reachable from \(x \) along a path of length \(z+1 \) or less from \(x \) to \(y \).
- Note: the loop terminates after \(n-1 \) outer loops since \(i \) runs from 2 to \(n \). Thus, when the algorithm terminates, if the loop invariant holds, \(a_{xy} = 1 \) iff \(y \) is reachable from \(x \) along a path of length \((n-1)+1 = n \) or less from \(x \) to \(y \), and thus is reachable since \(n \) is the longest a path can be (that starts at a node \(N \), visits all other nodes once, and comes back to \(N \)).
- Inductive proof
 - Basis: \(z=0 \) (i.e. before entering the outer loop), \(R = A \) and \(a_{xy} \) is 1 iff there is a path from \(x \) to \(y \); thus \(a_{xy} = 1 \) iff \(y \) is reachable from \(x \) along a path of length \(0+1 = 1 \) or less from \(x \) to \(y \).
 - Induction: By the induction hypothesis we have that after \(z \) outer loops, \(a_{xy} = 1 \) iff \(y \) is reachable from \(x \) along a path of length \(z+1 \) or less from \(x \) to \(y \). In the \(z+1 \) iteration we compute \(A^{z+1} \), in which \(a_{xy} = 1 \) iff there is a path of length \(z+1 \) from \(x \) to some node \(q \) and an edge from \(q \) to \(y \), i.e. a path of length \(z+2 \) from \(x \) to \(y \), and we add these reachable possibilities for paths of length \(z+2 \) to the result \(R \). Hence, after \(z+1 \) outer loops, \(a_{xy} = 1 \) iff \(y \) is reachable from \(x \) along a path of length \((z+1)+1 = z+2 \) or less from \(x \) to \(y \).