Discussion #28

Partial Orders
Topics

• Weak and strict partially ordered sets (posets)
• Total orderings
• Hasse diagrams
• Bounded and well-founded posets
Partial Orders

- Total orderings: single sequence of elements
- Partial orderings: some elements may come before/after others, but some need not be ordered
- Examples of partial orderings:
 - “must be completed before”
 - “set inclusion, \subseteq”

```
  foundation
   /       /
framing  wiring
  |       |
plumbing finishing
```

```
{a, b, c}
  /   /
{a, b} {a, c} {b, c}
 /   /
{a}  {b}  {c}
   /   |
  $\emptyset$
```
Partial Order Definitions
(Poset Definitions)

• A relation $R: S \leftrightarrow S$ is called a (weak) partial order if it is reflexive, antisymmetric, and transitive.

• A relation $R: S \leftrightarrow S$ is called a strict partial order if it is irreflexive, antisymmetric, and transitive.

 e.g. \leq on the integers

 e.g. $<$ on the integers
Total Order

• A total ordering is a partial ordering in which every element is related to every other element. (This forces a linear order or chain.)

• Examples:

 R: ≤ on \{1, 2, 3, 4, 5\} is total.

 Pick any two; they’re related one way or the other with respect to ≤.

 R: ⊇ on \{{a, b}, \{a\}, \{b\}, \emptyset\} is not total.

 We can find a pair not related one way or the other with respect to ⊇.

 \{a\} & \{b\}: neither \{a\} ⊇ \{b\} nor \{b\} ⊇ \{a\}
Hasse Diagrams

We produce Hasse Diagrams from directed graphs of relations by doing a transitive reduction plus a reflexive reduction (if weak) and (usually) dropping arrowheads (using, instead, “above” to give direction)

1) Transitive reduction — discard all arcs except those that “directly cover” an element.

2) Reflexive reduction — discard all self loops.

For \supseteq

\[
\begin{array}{c}
\{a\} \\
\downarrow \\
\{a, b\} \\
\downarrow \\
\emptyset \\
\end{array}
\quad \equiv \quad
\begin{array}{c}
\{a\} \\
\downarrow \\
\{a, b\} \\
\downarrow \\
\emptyset \\
\end{array}
\]

we write:

\[
\begin{array}{c}
\{a\} \\
\downarrow \\
\{b\} \\
\downarrow \\
\emptyset \\
\end{array}
\quad \equiv \quad
\begin{array}{c}
\{a\} \\
\downarrow \\
\{b\} \\
\downarrow \\
\emptyset \\
\end{array}
\]

Discussion #28
Descending Sequence

• Descending sequence: A sequence \(<x_1, x_2, \ldots, x_n>\) where for \(i < j\), \(x_i\) “is strictly above” \(x_j\) on a path in a Hasse diagram; \(x_i\) need not, however, be “immediately above” \(x_j\).

• Examples:

\[
\begin{align*}
\{a,b,c\}, \{c\}, \emptyset & \quad \text{descending} \\
\{a,b,c\}, \{b\}, \{c\}, \emptyset & \quad \text{not descending} \\
\{a,b,c\}, \{b,c\}, \{c\}, \emptyset & \quad \text{descending}
\end{align*}
\]

\[
\begin{align*}
5, 4, 2 & \quad \text{descending} \\
3, 2, 2, 2, 1 & \quad \text{not descending}
\end{align*}
\]
Well Founded Poset

• A poset is *well founded* if it has no infinite descending sequence.

• Examples:
 > on the integers?
 \(<3, 2, 1, 0, -1, \ldots> \) not well founded
 \(
 \geq \) on finite sets?
 \(<\{a, b, c\}, \{c\}, \emptyset> \) well founded
 All finite strict posets are well founded.
 \(\geq \) on finite sets?
 \(<\{a\}, \{a\}, \{a\}, \ldots> \) not a descending sequence
 All finite (weak) posets are well founded.
 > natural numbers?
 \(<\ldots, 3, 2, 1, 0> \) infinite, but well founded
Application of Well Founded Posets

• Has anyone ever gotten into an infinite loop in a program?

• We use well founded sets to prove that loops terminate.

 e.g. The following clearly terminates.

 for i=1 to n do …

 n–i for i=1, …, n is a descending sequence on a well founded set (the natural numbers): <n–1, n–2, …, n–n = 0>.
More Interesting Termination Example

//Reachable in a grammar
S' := ∅
S := {rule #'s of start symbol}
while |S| > |S'|
 S' := S
 S := S' ∪ {rule #'s of rhs non-t’s}

| iteration | S | S' | #rules | |S| | |S'| |
|-----------|---------|-------|--------|------|------|------|
| 0. | {1,2} | ∅ | 7 | 2 | 0 | 7 |
| 1. | {1,2,5,7} | {1,2} | 7 | 4 | 2 | 5 |
| 2. | {1,2,5,7,6} | {1,2,5,7} | 7 | 5 | 4 | 3 |
| 3. | {1,2,5,7,6} | {1,2,5,7,6} | 7 | 5 | 5 | 2 |

well founded: no infinite descending sequence
no matter what grammar is input.
Upper and Lower Bounds

• If a poset is built from relation R on set A, then any \(x \in A \) satisfying \(xRy \) is an upper bound of \(y \), and any \(x \in A \) satisfying \(yRx \) is a lower bound of \(y \).

• Examples: If \(A = \{a, b, c\} \) and R is \(\supseteq \), then \(\{a, c\} \) is an upper bound of \(\{a\}, \{c\}, \) and \(\emptyset \).
 - is also an upper bound of \(\{a, c\} \) (weak poset).
 - is a lower bound of \(\{a, b, c\} \).
 - is also a lower bound of \(\{a, c\} \) (weak poset).
Maximal and Minimal Elements

• If a poset is built from relation R on set A, then $y \in A$ is a \textit{maximal} element if there is no x such that xRy, and $x \in A$ is a \textit{minimal} element if there is no y such that xRy. (Note: We either need the poset to be strict or $x \neq y$.)

• In a Hasse diagram, every element with no element “above” it is a maximal element, whereas every element with no element “below” it is a minimal element.
Least Upper and Greatest Lower Bounds

- A least upper bound of two elements x and y is a minimal element in the intersection of the upper bounds of x and y.
- A greatest lower bound is a maximal element in the intersection of the lower bounds of x and y.
- Examples:
 - For \supseteq, \{a, c\} is a least upper bound of \{a\} and \{c\}, \emptyset is a greatest lower bound of \{a\} and \{b, c\}, and \{a\} is a least upper bound of \{a\} and \emptyset.
 - For the following strict poset, lub(x,y) = \{a,b\}, lub(y,y) = \{a,b,c\}, lub(a,y) = \emptyset, glb(a,b) = \{x,y\}, glb(a,c) = \{y\}