Discussion #25

Set Topics & Applications
Topics

• Sequences
• Strings
• Power Sets
• Types
• Relations — definitions & representations
Sequences

• Ordered list of elements from a set A
 – The sequence is said to be *over* A.
 – Repetitions of elements are allowed.
 – A sequence of *length* n is an *n-tuple*.

• Delimited by angle brackets
 – e.g. $<a,b,c>$, $<a,c,b,a,b,d>$
 – Empty sequence $<>$
 – Infinite sequence $<1,1,2,2,1,1,2,2,1,1,\ldots>
Formal Notation for Sequences

• Alphabet A

• Cross-product notation
 – $A \times A = A^2$
 – $A \times \ldots \times A = A^n$

• Set of all nonempty sequences over A
 – Of length $\leq n$: $A^1 \cup A^2 \cup \ldots \cup A^n$
 – Of any length: $A^1 \cup A^2 \cup \ldots = A^+$
 – Including empty: $A^0 \cup A^1 \cup \ldots = A^*$, where $A^0 = \langle \rangle$
Strings

• Strings
 – Sequences of characters are called strings.
 – The set of characters over which a string is formed is called an alphabet.
 – Normally we omit the commas and use quotes:
 <a,b,c,a> = 'abca'

• Concatenation (\(\cdot\),\(+\))
 – Examples:
 • \(<1,3,5>,<2,3,3>\) = \(<1,3,5>+<2,3,3>\) = \(<1,3,5,2,3,3>\)
 • 'ab' \(\cdot\)'ca' = 'ab'+'ca' = 'abca'
 – Concatenation is not commutative.
 – Concatenation is associative.
Subsequences & Substrings

• Subsequences: if S is a sequence, X is a subsequence if $S = y + X + z$, where y and z are (possibly empty) sequences.

• Substrings: string 'ab' is a substring of 'caabb' and of 'ab' as well.
Power Sets

• Set of all subsets of a set A.
 - $A = \{1,2\}$
 - $P(A) = 2^A = \{\{\}, \{1\}, \{2\}, \{1,2\}\}$

• We note that each element of A is either present (1) or not present (0). If we treat the elements of A as a sequence, we get a bit-string that represents the set.
 - If $A = \{a,b,c,d\}$, we can order the elements in a sequence $<a,b,c,d>$.
 - Then, we can let the bit-string say which elements are present: e.g. 0110 means $\{b,c\}$.
 - We can represent all the subsets of A, from $\emptyset = 0000$ to $U = 1111$.

• This bit-string notation also helps us know the number of subsets in the powerset (just count in binary)
 - $2^{\#A}$, $2^{|A|} = 2 \cdot 2 \cdot \ldots \cdot 2$ ($|A|$ times)
 - This motivates the notation 2^A for the power set.
Bit-String Operations on Power Sets

• With bit string representations
 – Set intersection: \(\cap = \) pairwise \(\land \)
 – Set union: \(\cup = \) pairwise \(\lor \)
 – Set complement: \(\sim = \) bit complement
 – Set minus: \(- = \) mask out using 1’s = complement 2\(^{nd} \) operand and do pairwise \(\land \)

• E.g. using \(\{a,b,c,d\} \)
 – \(1011 \cap 1101 = 1001 \) i.e. \(\{a,c,d\} \cap \{a,b,d\} = \{a,d\} \)
 – \(1011 \cup 1101 = 1111 \) i.e. \(\{a,c,d\} \cup \{a,b,d\} = \{a,b,c,d\} \)
 – \(\sim 1011 = 0100 \) i.e. \(\sim \{a,c,d\} = \{b\} \)
 – \(1010 - 1100 = 0010 \) i.e. \(\{a,c\} - \{a,b\} = \{c\} \)
Types

• A type is a pair of sets: (set of values, set of operations).
• A type declaration is sometimes called a signature.
• Kinds of types
 – Built-in types
 • int
 • float
 • Boolean - \{T,F\}
 • char - the available characters
 – Derived types: can be restricted (derived) using set builder notation (or its equivalent in some other syntax):
 \{x \mid x \in \mathbb{N} \land x \geq 1 \land x \leq 10\}, where \(\mathbb{N}\) represents the natural numbers
 = \{x \in \mathbb{N} \mid x \geq 1 \land x \leq 10\}
 = \{x : \mathbb{N} \mid x \geq 1 \land x \leq 10\}
 = \{x \mid x \geq 1 \land x \leq 10\}, where \(\mathbb{N}\) is understood to be the UofD
 = \{x \mid x \in \{1, \ldots, 10\}\}
Types (continued…)

• When the operations are “closed”, the operations yield only a single type (or sort).
• Many-sorted algebras
 – (integers, \{+, −, =, ≠\}): 2 = 3 is False (False \∉\ integers: two sorts, namely, integer & Boolean)
 – (strings, \{ +, convert_to_integer\}): convert_to_integer('125') = 125 (125 \∉\ strings: two sorts, namely strings & integers)
 – Type casting: conversion from one type to another
• Note about the project
 – We could have assigned each attribute in a scheme to have a type (be associated with a subset of the domain).
 – Substitutions for variables for an attribute would have then been limited to the declared subset.
Binary Relations

• Sets of ordered 2-tuples (pairs) with values selected from domains (sets)
• Formally, a relation R from set A to set B is a set of pairs (x,y) such that $x \in A$ and $y \in B$. We may write $R: A \leftrightarrow B$ to express this.
 – $R \subseteq A \times B$
 – If $(x,y) \in R$, we say that x is R-related to y; we may also write xRy.
 – Example:
 • $\lt : \mathbb{N} \leftrightarrow \mathbb{N}$ (where \mathbb{N} is the set of natural numbers)
 • $(2,3) \in \lt$ or $2 < 3$
 – Predicates also define relations
 $\lt: \{0,1,2\} \leftrightarrow \{-1,0,1,2\}$
 = $\{(x,y) \mid x \in \{0,1,2\} \land y \in \{-1,0,1,2\} \land x < y\}$
 = $\{ (0,1), (0,2), (1,2) \}$
Representations for Binary Relations

Tables

<table>
<thead>
<tr>
<th></th>
<th><</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Matrices

\[
\begin{pmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

Graphs
- directed graph or digraph
- directed arcs
Domains and Ranges for Binary Relations

Let $R = \{(0,1), (0,2), (1,2)\}$, then

- **Domain of $R = \text{dom } R = \text{dom}(R) = \{x \mid \exists y((x,y) \in R)\}\)**
 - i.e. $\{0,1\}$
 - like $\pi_x R$

- **Range of $R = \text{ran } R = \text{ran}(R) = \{y \mid \exists x((x,y) \in R)\}\)**
 - i.e. $\{1,2\}$
 - like $\pi_y R$

Diagram:
- Domain Space: 0, 1, 2
- Range Space: -1, 0, 1, 2
- Domain
 - 0 → 1 → 2
 - 0 → -1
 - 2 → 1 → 2