
It's because of the requirement for separate compilation and because templates are 
instantiation-style polymorphism.

Lets get a little closer to concrete for an explanation. Say I've got the following files:

 foo.h 

 declares the interface of class MyClass<T>

 foo.cpp 

 defines the implementation of class MyClass<T>

 bar.cpp 
 uses MyClass<int>

Separate compilation means I should be able to compile foo.cpp independently from 
bar.cpp. The compiler does all the hard work of analysis, optimization, and code generation
on each compilation unit completely independently; we don't need to do whole-program 
analysis. It's only the linker that needs to handle the entire program at once, and the linker's
job is substantially easier.
bar.cpp doesn't even need to exist when I compile foo.cpp, but I should still be able to link 
the foo.o I already had together with the bar.o I've only just produced, without needing to 
recompile foo.cpp. foo.cpp could even be compiled into a dynamic library, distributed 
somewhere else without foo.cpp, and linked with code they write years after I wrote 
foo.cpp.
"Instantiation-style polymorphism" means that the template MyClass<T> isn't really a 
generic class that can be compiled to code that can work for any value of T. That would add 
overhead such as boxing, needing to pass function pointers to allocators and constructors, 
etc. The intention of C++ templates is to avoid having to write nearly identical class 

MyClass_int, class MyClass_float, etc, but to still be able to end up with compiled code that is
mostly as if we had written each version separately. So a template is literally a template; a 
class template is not a class, it's a recipe for creating a new class for each T we encounter. 
A template cannot be compiled into code, only the result of instantiating the template can be
compiled.
So when foo.cpp is compiled, the compiler can't see bar.cpp to know that MyClass<int> is 
needed. It can see the template MyClass<T>, but it can't emit code for that (it's a template, 
not a class). And when bar.cpp is compiled, the compiler can see that it needs to create a 
MyClass<int>, but it can't see the template MyClass<T> (only its interface in foo.h) so it 
can't create it.
If foo.cpp itself uses MyClass<int>, then code for that will be generated while compiling 
foo.cpp, so when bar.o is linked to foo.o they can be hooked up and will work. We can use
that fact to allow a finite set of template instantiations to be implemented in a .cpp file by 
writing a single template. But there's no way for bar.cpp to use the template as a template 
and instantiate it on whatever types it likes; it can only use pre-existing versions of the 
templated class that the author of foo.cpp thought to provide.
You might think that when compiling a template the compiler should "generate all versions", 
with the ones that are never used being filtered out during linking. Aside from the huge 



overhead and the extreme difficulties such an approach would face because "type modifier" 
features like pointers and arrays allow even just the built-in types to give rise to an infinite 
number of types, what happens when I now extend my program by adding:

 baz.cpp 
 declares and implements class BazPrivate, and uses MyClass<BazPrivate>

There is no possible way that this could work unless we either

1. Have to recompile foo.cpp every time we change any other file in the program, in 
case it added a new novel instantiation of MyClass<T>

2. Require that baz.cpp contains (possibly via header includes) the full template of 
MyClass<T>, so that the compiler can generate MyClass<BazPrivate> during 
compilation of baz.cpp.

Nobody likes (1), because whole-program-analysis compilation systems take forever to 
compile , and because it makes it impossible to distribute compiled libraries without the 
source code. So we have (2) instead.

It means that the most portable way to define method implementations of template classes 
is to define them inside the template class definition.

template < typename ... >
class MyClass
{

    int myMethod()
    {
       // Not just declaration. Add method implementation here
    }
};

A brief primer on const

To the compiler, the const qualifier on a method refers to physical constness: calling this method does 
not change the bits in this object.  What we want is logical constness, which is only partly overlapping: 
calling this method does not affect the object in ways callers will notice, nor does it give you a handle with 
the ability to do so.

Mismatches between these concepts can occur in both directions.  When something is logically but not 
physically const, C++ provides the mutable keyword to silence compiler complaints.  This is valuable for 
e.g. cached calculations, where the cache is an implementation detail callers do not care about.  When 
something is physically but not logically const, however, the compiler will happily accept it, and there are 
no tools that will automatically save you.  This discrepancy usually involves pointers.  For example,

void T::Cleanup() const { delete pointer_member_; }



Deleting a member is a change callers are likely to care about, so this is probably not logically const.  But 
because delete does not affect the pointer itself, but only the memory it points to, this code is physically 
const, so it will compile.

Or, more subtly, consider this pseudocode from a node in a tree:

class Node {
 public:
  void RemoveSelf() { parent_->RemoveChild(this); }
  void RemoveChild(Node* node) {
    if (node == left_child_)
      left_child_ = nullptr;
    else if (node == right_child_)
      right_child_ = nullptr;
  }
  Node* left_child() const { return left_child_; }
  Node* right_child() const { return right_child_; }

 private:
  Node* parent_;
  Node* left_child_;
  Node* right_child_;
};

The left_child() and right_child() methods don't change anything about |this|, so making them const 
seems fine.  But they allow code like this:

void SignatureAppearsHarmlessToCallers(const Node& node) {
  node.left_child()->RemoveSelf();
  // Now |node| has no |left_child_|, despite having been passed in by const 
ref.
}

The original class definition compiles, and looks locally fine, but it's a timebomb: a const method returning
a handle that can be used to change the system in ways that affect the original object.  Eventually, 
someone will actually modify the object, potentially far away from where the handle is obtained.

These modifications can be difficult to spot in practice.  As we see in the previous example, splitting 
related concepts or state (like "a tree") across several objects means a change to one object affects the 
behavior of others.  And if this tree is in turn referred to by yet more objects (e.g. the DOM of a web page, 
which influences all sorts of other data structures relating to the page), then small changes can have 
visible ripples across the entire system.  In a codebase as complex as Chromium, it can be almost 
impossible to reason about what sorts of local changes could ultimately impact the behavior of distant 
objects, and vice versa.

"Logically const correct" code assures readers that const methods will not change the system, directly or 
indirectly, nor allow callers to easily do so.  They make it easier to reason about large-scale behavior.  But
since the compiler verifies physical constness, it will not guarantee that code is actually logically const.
 Hence the recommendations here.
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