
Home > Articles > Programming > C/C++
User-Defined Extractors and Inserters in C++

 By Cameron Hughes and Tracey Hughes
 May 7, 2004

� Contents
␡

1. C++ Input/Output Models
2. The Stream Inserter Operator <<
3. The Stream Extractor Operator >>
4. From Here

Learn More � Buy
The Stream Inserter Operator <<
Inserters are functions used to insert data or objects into an output source.
The insertion operator for user-defined types must perform two levels of
translations: It first breaks down the user-defined type into built-in datatypes,
and then converts the built-in datatypes to a generic stream of bytes
directed to some output device. The left bit Shift operator << is overloaded
for the user-defined datatype, converting it to an output-translation operator.
The function defines what the operation will do relative to the user-defined
class. The function has access to the data members and functions of the
class.
The appropriate representation of the class is then inserted into the output
stream. In some cases, a class will have multiple representations and the
insertion operator must be able to determine which one to use. This
definition of the inserter should essentially maintain the semantics of the
operator and should be consistent with expected syntax normally associated
with the operator. The inserter is declared as a friend member function. An
operator declared as a friend of a class has the advantage of having access
to the private elements without being a member of the class. The definition
of the friend function should take this general form:

ostream& operator<<(ostream& Out,const class_type &class_object)
{
 Out << class_object.data_member ... ; //insert object contents
 ...
 return Out;
}

To create an inserter for a user-defined object, this prototype is listed as part
of the declaration for the class:

friend ostream& operator<<(ostream& Out, const class_type
&class_object);

http://www.informit.com/
http://www.informit.com/buy.aspx?isbn=9780131013766&w_ptgrevartcl=User-Defined+Extractors+and+Inserters+in+C%2B%2B_170909
http://www.informit.com/store/parallel-and-distributed-programming-using-c-plus-plus-9780131013766?w_ptgrevartcl=User-Defined+Extractors+and+Inserters+in+C%2B%2B_170909
http://www.informit.com/articles/article.aspx?p=170909&seqNum=4
http://www.informit.com/articles/article.aspx?p=170909&seqNum=3
http://www.informit.com/articles/article.aspx?p=170909
http://www.informit.com/articles/article.aspx?p=170909&seqNum=2
http://www.informit.com/articles/article.aspx?p=170909&seqNum=2
http://www.informit.com/authors/bio/dc595651-7b9b-4683-9662-edd88d5dcf70
http://www.informit.com/authors/bio/c3f5a522-be0b-4f67-a317-7d85c7a384f6
http://www.informit.com/articles/article.aspx?p=170909
http://www.informit.com/articles/index.aspx?st=60233
http://www.informit.com/articles/index.aspx?st=60206
http://www.informit.com/articles/index.aspx

The first parameter in the parameter list is a reference to an ostream. This is
a reference because the stream will be altered once the representation of the
class_object has been inserted into the stream. The ostream appears on
the left side of the inserter operator. The second parameter in the list is the
class_object that appears on the right side of the inserter operator. This is
the user-defined object that's inserted into the stream. It returns a reference
to the ostream to allow numerous inserters to be strung along into one
message. Because the operator is a friend operator, the keyword precedes
the prototype declaration.
NOTE
If the object is very large, use a reference to the object for the sake of
efficiency. The object should be a const if the operation doesn't modify the
object.
This is the prototype for our inserter of the user-defined class course:

friend ostream& operator<<(ostream& Out, course &Course);

Listing 3 shows the definition for the friend operator << for the course
class:
Listing 3 Defining the friend Operator << for a User-Defined Object

ostream &operator<<(ostream &Out, course &Course)
{
 Out << Course.toHornClause() << ends;
 return Out;
}

For our course object, one of the appropriate representations is a horn
clause. The member function toHornClause() is called. This member
function actually creates the horn clause (not shown). The toHornClause()
method returns a string that represents the course object as a horn clause
of this form:

course(start_time,end_time,course_description,[days]).

This is an example of a horn clause representation of our course object:

course(1000,1200,"Introduction to Computer Architecture",
[M,W,F]).

This is what will be inserted into the output stream. The ostream is returned
by the operator so a chain of insertion can be performed, as shown earlier in
Listing 2:

DegreePlan << Schedule[N] << endl;

Two other appropriate representations for our course object are HTML and
XML. We overload the inserter operator << to provide this translation as well
as providing the horn clause translation.
In Listing 4, the inserter inserts the HTML tags and course object data into
the output stream:
Listing 4 Defining an Inserter That Inserts HTML Tags and Object
Data into an Output Stream

ostream &operator<<(ostream &Out, course &Course)
{
 Out << "<html>" << endl <<
 "<body>" << endl <<
 "<table>" << endl <<
 "<tr>" << endl <<
 "<td>Start Time</td>" << endl <<
 "<td>" << Course.startTime().c_str() << "</td></tr>"
 << endl <<
 "<tr>" << endl <<
 "<td>End Time</td>" << endl <<
 "<td>" << Course.endTime().c_str() << "</td></tr>"
 << endl <<
 "<tr>" << endl <<
 "<td>Description</td>"<< endl <<
 "<td>" << Course.description().c_str() << "</td></tr>"
 << endl <<
 ...
 "</table>" << endl <<
 "</body>" << endl <<
 "</html>" << endl;
 return Out;
}

In Listing 5, the inserter inserts the XML tags and course object data into the
output stream:
Listing 5 Defining an Inserter That Inserts XML tags and Object Data
into an Output Stream

ostream &operator<<(ostream &Out, course &Course)
{
 Out << "<?xml version = /"1.0/" standalone=/"yes/"?>" << endl
<<
 "<DOCUMENT>" << endl <<
 "<COURSE_START_TIME>" << Course.startTime().c_str() <<
 "</COURSE_START_TIME>" << endl <<
 "<COURSE_END_TIME>" << Course.endTime().c_str() <<
 "</COURSE_END_TIME>" << endl <<

 "<COURSE_DESCRIPTION>" << Course.description().c_str() <<
 "</COURSE_DESCRIPTION>" << endl <<
 ...
 "</DOCUMENT>" << endl;
 return Out;
}

	User-Defined Extractors and Inserters in C++
	The Stream Inserter Operator <<
	Listing 3 Defining the friend Operator << for a User-Defined Object
	Listing 4 Defining an Inserter That Inserts HTML Tags and Object Data into an Output Stream
	Listing 5 Defining an Inserter That Inserts XML tags and Object Data into an Output Stream

