
cppreference.com

Order of evaluation

Order of evaluation of the operands of almost all C++ operators (including the order of
evaluation of function arguments in a function-call expression and the order of
evaluation of the subexpressions within any expression) is unspecified. The compiler can
evaluate operands in any order, and may choose another order when the same
expression is evaluated again.

There are exceptions to this rule which are noted below.

Except where noted below, there is no concept of left-to-right or right-to-left evaluation
in C++. This is not to be confused with left-to-right and right-to-left associativity of
operators: the expression f1() + f2() + f3() is parsed as (f1() + f2()) + f3() due to left-
to-right associativity of operator+, but the function call to f3 may be evaluated first, last,
or between f1() or f2() at run time.

 Sequenced-before rules (since C++11)

 Definitions

 Evaluations

There are two kinds of evaluations performed by the compiler for each expression or
subexpression (both of which are optional):

 value computation: calculation of the value that is returned by the expression. This
may involve determination of the identity of the object (glvalue evaluation, e.g. if the
expression returns a reference to some object) or reading the value previously assigned
to an object (prvalue evaluation, e.g. if the expression returns a number, or some other
value)

 side effect: access (read or write) to an object designated by a volatile glvalue,
modification (writing) to an object, calling a library I/O function, or calling a function that
does any of those operations.

 Ordering

"sequenced-before" is an asymmetric, transitive, pair-wise relationship between
evaluations within the same thread.

 If A is sequenced before B, then evaluation of A will be complete before evaluation
of B begins.

http://en.cppreference.com/

 If A is not sequenced before B and B is sequenced before A, then evaluation of B
will be complete before evaluation of A begins.

 If A is not sequenced before B and B is not sequenced before A, then two
possibilities exist:

o evaluations of A and B are unsequenced: they may be performed in any
order and may overlap (within a single thread of execution, the compiler may interleave
the CPU instructions that comprise A and B)

o evaluations of A and B are indeterminately sequenced: they may be
performed in any order but may not overlap: either A will be complete before B, or B will
be complete before A. The order may be the opposite the next time the same expression
is evaluated.

 Rules

1) Each value computation and side effect of a full expression, that is

 unevaluated operand

 constant expression

 an entire initializer, including any comma-separated constituent expressions

 the destructor call generated at the end of the lifetime of a non-temporary object

 an expression that is not part of another full-expression (such as the entire
expression statement, controlling expression of a for/while loop, conditional expression of
if/switch, the expression in a return statement, etc),

including implicit conversions applied to the result of the expression, destructor calls to the
temporaries, default member initializers (when initializing aggregates), and every
other language construct that involves a function call, is sequenced before each
value computation and side effect of the next full expression.

2) The value computations (but not the side-effects) of the operands to any operator are
sequenced before the value computation of the result of the operator (but not its
side-effects).

3) When calling a function (whether or not the function is inline, and whether or not explicit
function call syntax is used), every value computation and side effect associated
with any argument expression, or with the postfix expression designating the
called function, is sequenced before execution of every expression or statement
in the body of the called function.

4) The value computation of the built-in post-increment and post-decrement operators is
sequenced before its side-effect.

5) The side effect of the built-in pre-increment and pre-decrement operators is sequenced
before its value computation (implicit rule due to definition as compound
assignment)

http://en.cppreference.com/w/cpp/language/operator_incdec
http://en.cppreference.com/w/cpp/language/operator_incdec
http://en.cppreference.com/w/cpp/language/expressions#Operators
http://en.cppreference.com/w/cpp/language/return
http://en.cppreference.com/w/cpp/language/switch
http://en.cppreference.com/w/cpp/language/if
http://en.cppreference.com/w/cpp/language/while
http://en.cppreference.com/w/cpp/language/for
http://en.cppreference.com/w/cpp/language/statements#Expression_statements
http://en.cppreference.com/w/cpp/language/initialization
http://en.cppreference.com/w/cpp/language/constant_expression
http://en.cppreference.com/w/cpp/language/expressions#Unevaluated_expressions

6) Every value computation and side effect of the first (left) argument of the built-in logical
AND operator && and the built-in logical OR operator || is sequenced before
every value computation and side effect of the second (right) argument.

7) Every value computation and side effect associated with the first expression in the
conditional operator ?: is sequenced before every value computation and side
effect associated with the second or third expression.

8) The side effect (modification of the left argument) of the built-in assignment operator and
of all built-in compound assignment operators is sequenced after the value
computation (but not the side effects) of both left and right arguments, and is
sequenced before the value computation of the assignment expression (that is,
before returning the reference to the modified object)

9) Every value computation and side effect of the first (left) argument of the built-in comma
operator , is sequenced before every value computation and side effect of the
second (right) argument.

10) In list-initialization, every value computation and side effect of a given initializer
clause is sequenced before every value computation and side effect associated
with any initializer clause that follows it in the brace-enclosed comma-
separated list of initalizers.

11) A function call that is not sequenced before or sequenced after another function call
is indeterminately sequenced (the program must behave as if the CPU
instructions that constitute different function calls were not interleaved, even if
the functions were inlined).

The rule 11 has one exception: a function calls made by a standard library
algorithm executing under std::par_unseq execution policy are unsequenced and
may be arbitrarily interleaved.

(since
C++17)

12) The call to the allocation function (operator new) is indeterminately sequenced with
respect to (until C++17)sequenced before (since C++17) the evaluation of the
constructor arguments in a new-expression

13) When returning from a function, copy-initialization of the temporary that is the result of
evaluating the function call is sequenced-before the destruction of all temporaries
at the end of the operand of the return statement, which, in turn, is sequenced-
before the destruction of local variables of the block enclosing the return
statement.

(since
C+
+14)

14) In a function-call expression, the expression that names the function is sequenced
before every argument expression and every default argument.

15) In a function call, value computations and side effects of the initialization of every
parameter are indeterminately sequenced with respect to value computations and
side effects of any other parameter.

16) Every overloaded operator obeys the sequencing rules of the built-in operator it
overloads when called using operator notation.

17) In a subscript expression E1[E2], every value computation and side-effect of E1 is
sequenced before every value computation and side effect of E2

18) In a pointer-to-member expression E1.*E2 or E1->*E2, every value computation and side-
effect of E1 is sequenced before every value computation and side effect of E2
(unless the dynamic type of E1 does not contain the member to which E2 refers)

19) In a shift operator expression E1<<E2 and E1>>E2, every value computation and side-effect
of E1 is sequenced before every value computation and side effect of E2

20) In every simple assignment expression E1=E2 and every compound assignment
expression E1@=E2, every value computation and side-effect of E2 is sequenced
before every value computation and side effect of E1

(since
C++17)

http://en.cppreference.com/w/cpp/language/return
http://en.cppreference.com/w/cpp/language/new
http://en.cppreference.com/w/cpp/memory/new/operator_new
http://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
http://en.cppreference.com/w/cpp/language/as_if
http://en.cppreference.com/w/cpp/language/list_initialization
http://en.cppreference.com/w/cpp/language/operator_other#Built-in_comma_operator
http://en.cppreference.com/w/cpp/language/operator_other#Built-in_comma_operator
http://en.cppreference.com/w/cpp/language/operator_assignment#Builtin_compound_assignment
http://en.cppreference.com/w/cpp/language/operator_assignment#Builtin_direct_assignment
http://en.cppreference.com/w/cpp/language/operator_other#Conditional_operator
http://en.cppreference.com/w/cpp/language/operator_logical

21) Every expression in a comma-separated list of expressions in a parenthesized initializer
is evaluated as if for a function call (indeterminately-sequenced)

 Undefined behavior

1) If a side effect on a scalar object is unsequenced relative to another side effect on the
same scalar object, the behavior is undefined.

i = ++i + 2; // undefined behavior until C++11
i = i++ + 2; // undefined behavior until C++17
f(i = -2, i = -2); // undefined behavior until C++17
f(++i, ++i); // undefined behavior until C++17, unspecified after C+
+17
i = ++i + i++; // undefined behavior

2) If a side effect on a scalar object is unsequenced relative to a value computation using
the value of the same scalar object, the behavior is undefined.

cout << i << i++; // undefined behavior until C++17
a[i] = i++; // undefined behavior until C++17
n = ++i + i; // undefined behavior

 Sequence point rules (until C++11)

 Definitions

Evaluation of an expression might produce side effects, which are: accessing an object
designated by a volatile lvalue, modifying an object, calling a library I/O function, or
calling a function that does any of those operations.

A sequence point is a point in the execution sequence where all side effects from the
previous evaluations in the sequence are complete, and no side effects of the
subsequent evaluations started.

 Rules

1) There is a sequence point at the end of each full expression (typically, at the
semicolon).

2) When calling a function (whether or not the function is inline and whether or not
function call syntax was used), there is a sequence point after the evaluation of all
function arguments (if any) which takes place before execution of any expressions or
statements in the function body.

3) There is a sequence point after the copying of a returned value of a function and
before the execution of any expressions outside the function.

http://en.cppreference.com/w/cpp/language/ub
http://en.cppreference.com/w/cpp/language/ub

4) Once the execution of a function begins, no expressions from the calling function are
evaluated until execution of the called function has completed (functions cannot be
interleaved).

5) In the evaluation of each of the following four expressions, using the built-in (non-
overloaded) operators, there is a sequence point after the evaluation of the expression a.

a && b
a || b
a ? b : c
a , b

 Undefined behavior

1) Between the previous and next sequence point a scalar object must have its stored
value modified at most once by the evaluation of an expression, otherwise the behavior
is undefined.

i = ++i + i++; // undefined behavior
i = i++ + 1; // undefined behavior
i = ++i + 1; // undefined behavior (well-defined in C++11)
++ ++i; // undefined behavior (well-defined in C++11)
f(++i, ++i); // undefined behavior
f(i = -1, i = -1); // undefined behavior

2) Between the previous and next sequence point, the prior value of a scalar object that
is modified by the evaluation of the expression, must be accessed only to determine the
value to be stored. If it is accessed in any other way, the behavior is undefined.

cout << i << i++; // undefined behavior
a[i] = i++; // undefined behavior

 Defect reports

The following behavior-changing defect reports were applied retroactively to previously
published C++ standards.

DR Applied
to Behavior as published Correct behavior

CWG
1885 C++14 sequencing of the destruction of automatic variables on function

return was not explicit
sequencing rules
added

 See also

 Operator precedence which defines how expressions are built from their source
code representation.

 When parsing an expression, an operator which is listed on some row of the table
above with a precedence will be bound tighter (as if by parentheses) to its arguments

http://en.cppreference.com/w/cpp/language/operator_precedence
http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1885
http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1885
http://en.cppreference.com/w/cpp/language/ub
http://en.cppreference.com/w/cpp/language/ub
http://en.cppreference.com/w/cpp/language/ub

than any operator that is listed on a row further below it with a lower precedence. For
example, the expressions std:: cout << a & b and *p++ are parsed as (std:: cout <<
a) & b and *(p++), and not as std:: cout << (a & b) or (*p)++.

 Operators that have the same precedence are bound to their arguments in the
direction of their associativity. For example, the expression a = b = c is parsed as a =
(b = c), and not as (a = b) = c because of right-to-left associativity of assignment,
but a + b - c is parsed (a + b) - c and not a + (b - c) because of left-to-right
associativity of addition and subtraction.

 Associativity specification is redundant for unary operators and is only shown for
completeness: unary prefix operators always associate right-to-left (delete ++*p is
delete(++(*p))) and unary postfix operators always associate left-to-right (a[1][2]++
is ((a[1])[2])++). Note that the associativity is meaningful for member access
operators, even though they are grouped with unary postfix operators: a.b++ is parsed
(a.b)++ and not a.(b++).

 Operator precedence is unaffected by operator overloading. For example,
std:: cout << a ? b : c; parses as (std:: cout << a) ? b : c; because the
precedence of arithmetic left shift is higher than the conditional operator.

 [] Notes

 Precedence and associativity are compile-time concepts and are independent from
order of evaluation, which is a runtime concept.

 The standard itself doesn't specify precedence levels. They are derived from the
grammar.

 const_cast, static_cast, dynamic_cast, reinterpret_cast, typeid, sizeof..., noexcept
and alignof are not included since they are never ambiguous.

 Some of the operators have alternate spellings (e.g., and for &&, or for ||, not for
!, etc.).

 Relative precedence of the ternary conditional and assignment operators differs
between C and C++: in C, assignment is not allowed on the right-hand side of a ternary
conditional operator, so e = a < d ? a++ : a = d cannot be parsed. Many C compilers
use a modified grammar where ?: has higher precedence than =, which parses that as e
= (((a < d) ? (a++) : a) = d) (which then fails to compile because ?: is never
lvalue in C and = requires lvalue on the left). In C++, ?: and = have equal precedence and
group right-to-left, so that e = a < d ? a++ : a = d parses as e = ((a < d) ? (a+
+) : (a = d)).

http://en.cppreference.com/w/cpp/language/operator_alternative
http://en.cppreference.com/w/cpp/language/alignof
http://en.cppreference.com/w/cpp/language/noexcept
http://en.cppreference.com/w/cpp/language/sizeof...
http://en.cppreference.com/w/cpp/language/typeid
http://en.cppreference.com/w/cpp/language/reinterpret_cast
http://en.cppreference.com/w/cpp/language/dynamic_cast
http://en.cppreference.com/w/cpp/language/static_cast
http://en.cppreference.com/w/cpp/language/const_cast
http://en.cppreference.com/w/cpp/language/eval_order
http://en.cppreference.com/w/cpp/io/cout
http://en.cppreference.com/w/cpp/io/cout
http://en.cppreference.com/w/cpp/language/operators
http://en.cppreference.com/w/cpp/io/cout
http://en.cppreference.com/w/cpp/io/cout
http://en.cppreference.com/w/cpp/io/cout

	cppreference.com
	Order of evaluationFrom cppreference.com
	[edit] Sequenced-before rules (since C++11)
	[edit] Definitions
	[edit] Evaluations
	[edit] Ordering

	[edit] Rules
	[edit] Undefined behavior

	[edit] Sequence point rules (until C++11)
	[edit] Definitions
	[edit] Rules
	[edit] Undefined behavior
	[edit] Defect reports
	[edit] See also
	[edit] Notes

