
Namespaces

Namespaces provide a method for preventing name conflicts in large projects.

Symbols declared inside a namespace block are placed in a named scope that prevents
them from being mistaken for identically-named symbols in other scopes.

Multiple namespace blocks with the same name are allowed. All declarations within
those blocks are declared in the named scope.

 Syntax

namespace ns_name {
declarations }

(1
)

inline namespace ns_name {
declarations }

(2
)

(since C+
+11)

namespace { declarations }
(3
)

ns_name::name
(4
)

using namespace ns_name;
(5
)

using ns_name::name;
(6
)

namespace name = qualified-
namespace ;

(7
)

namespace ns_name::name
(8
)

(since C+
+17)

1) Named namespace definition for the namespace ns_name.

2) Inline namespace definition for the namespace ns_name. Declarations inside ns_name
will be visible in its enclosing namespace.

3) Unnamed namespace definition. Its members have potential scope from their point of
declaration to the end of the translation unit, and have internal linkage.

4) Namespace names (along with class names) can appear on the left hand side of the
scope resolution operator, as part of qualified name lookup.

5) using-directive: From the point of view of unqualified name lookup of any name after a
using-directive and until the end of the scope in which it appears, every name from
ns_name is visible as if it were declared in the nearest enclosing namespace which
contains both the using-directive and ns_name.

6) using-declaration: makes the symbol name from the namespace ns_name accessible
for unqualified lookup as if declared in the same class scope, block scope, or namespace
as where this using-declaration appears.

7) namespace-alias-definition: makes name a synonym for another namespace: see
namespace alias

http://en.cppreference.com/w/cpp/language/namespace_alias
http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/namespace#Using-declarations
http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/namespace#Using-directives
http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/storage_duration
http://en.cppreference.com/w/cpp/language/namespace#Unnamed_namespaces
http://en.cppreference.com/w/cpp/language/namespace#Inline_namespaces
http://en.cppreference.com/w/cpp/language/namespace#Namespaces

8) nested namespace definition: namespace A::B::C { is equivalent to namespace A {
namespace B { namespace C {

 Explanation

 Namespaces

inline(optional) namespace attr(optional) identifier {
namespace-body }

inline -
if present, makes this an inline namespace (see below). Cannot appear on
the extension-namespace-definition if the original-namespace-definition did
not use inline

attr(C++17) - optional sequence of any number of attributes

identifier -

either a previously unused identifier, in which case this is original-
namespace-definition or the name of a namespace, in which case this is
extension-namespace-definition or a sequence of enclosing namespace
specifiers separated by ::, ending with identifier, in which case this is a
nested-namespace-definition (since C++17)

namespac
e-body

-
possibly empty sequence of declarations of any kind (including class and
function definitions as well as nested namespaces)

Namespace definitions are only allowed at namespace scope, including the global scope.

To reopen an existing namespace (formally, to be an extension-namespace-definition),
the lookup for the identifier used in the namespace definition must resolve to a
namespace name (not a namespace alias), that was declared as a member of the
enclosing namespace or of an inline namespace within an enclosing namespace.

The namespace-body defines a namespace scope, which affects name lookup.

All names introduced by the declarations that appear within namespace-body (including
nested namespace definitions) become members of the namespace identifier, whether
this namespace definition is the original namespace definition (which introduced
identifier), or an extension namespace definition (which "reopened" the already defined
namespace)

A namespace member that was declared within a namespace body may be defined or
redeclared outside of it using explicit qualification

namespace Q {

 namespace V { // V is a member of Q, and is fully defined within Q

// namespace Q::V { // C++17 alternative to the above two lines

 class C { void m(); }; // C is a member of V and is fully defined within V

 // C::m is only declared

 void f(); // f is a member of V, but is only declared here

 }

 void V::f() // definition of V's member f outside of V

 // f's enclosing namespaces are still the global namespace, Q, and Q::V

 {

http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/scope
http://en.cppreference.com/w/cpp/language/declarations
http://en.cppreference.com/w/cpp/language/attributes

 extern void h(); // This declares ::Q::V::h

 }

 void V::C::m() // definition of V::C::m outside of the namespace (and the class body)

 // enclosing namespaces are the global namespace, Q, and Q::V

 {

 }

}

Out-of-namespace definitions and redeclarations are only allowed after the point of
declaration, only at namespace scope, and only in namespaces that enclose the original
namespace (including the global namespace) and they must use qualified-id syntax (since
C++14)

namespace Q {

 namespace V { // original-namespace-definition for V

 void f(); // declaration of Q::V::f

 }

 void V::f() {} // OK

 void V::g() {} // Error: g() is not yet a member of V

 namespace V { // extension-namespace-definition for V

 void g(); // declaration of Q::V::g

 }

}

namespace R { // not a enclosing namespace for Q

 void Q::V::g() {} // Error: cannot define Q::V::g inside R

}

void Q::V::g() {} // OK: global namespace encloses Q

Names introduced by friend declarations within a non-local class X become members of
the innermost enclosing namespace of X, but they do not become visible to lookup
(neither unqualified nor qualified) unless a matching declaration is provided at
namespace scope, either before or after the class definition. Such name may be found
through ADL which considers both namespaces and classes.

Only the innermost enclosing namespace is considered by such friend declaration when
deciding whether the name would conflict with a previously declared name.

void h(int);

namespace A {

 class X {

 friend void f(X); // A::f is a friend

 class Y {

 friend void g(); // A::g is a friend

http://en.cppreference.com/w/cpp/language/adl
http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/friend

 friend void h(int); // A::h is a friend, no conflict with ::h

 };

 };

 // A::f, A::g and A::h are not visible at namespace scope

 // even though they are members of the namespace A

 X x;

 void g() { // definition of A::g

 f(x); // A::X::f is found through ADL

 }

 void f(X) {} // definition of A::f

 void h(int) {} // definition of A::h

 // A::f, A::g and A::h are now visible at namespace scope

 // and they are also friends of A::X and A::X::Y

}

Inline namespaces

An inline namespace is a namespace that uses the optional keyword inline in its
original-namespace-definition.

Members of an inline namespace are treated as if they are members of the
enclosing namespace in many situations (listed below). This property is transitive:
if a namespace N contains an inline namespace M, which in turn contains an inline
namespace O, then the members of O can be used as though they were members
of M or N.

 A using-directive that names the inline namespace is implicitly inserted in
the enclosing namespace (similar to the implicit using-directive for the
unnamed namespace)

 In argument-dependent lookup, when a namespace is added to the set of
associated namespaces, its inline namespaces are added as well, and if an
inline namespace is added to the list of associated namespaces, its
enclosing namespace is added as well.

 Each member of an inline namespace can be partially specialized, explicitly
instantiated or explicitly specialized as if it were a member of the enclosing
namespace.

 Qualified name lookup that examines the enclosing namespace will include
the names from the inline namespaces even if the same name is present in
the enclosing namespace.

{ // in C++14, std::literals and its member namespaces are inline

 using namespace std::string_literals; // makes visible operator""s

 // from std::literals::string_literals

 auto str = "abc"s;

(since
C+
+11)

http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/adl

}

{

 using namespace std::literals; // makes visible both

 // std::literals::string_literals::operator""s

 // and
std::literals::chrono_literals::operator""s

 auto str = "abc"s;

 auto min = 60s;

}

{

 using std::operator""s; // makes both
std::literals::string_literals::operator""s

 // and std::literals::chrono_literals::operator""s
visible

 auto str = "abc"s;

 auto min = 60s;

}

Note: the rule about specializations allows library versioning: different
implementations of a library template may be defined in different inline
namespaces, while still allowing the user to extend the parent namespace with an
explicit specialization of the primary template.

 Unnamed namespaces

The unnamed-namespace-definition is a namespace definition of the form

inline(optional) namespace attr(optional) {
namespace-body }

attr(C+
+17) -

optional sequence of any number of
attributes

This definition is treated as a definition of a namespace with unique name and a using-
directive in the current scope that nominates this unnamed namespace.

namespace {

 int i; // defines ::(unique)::i

}

void f() {

 i++; // increments ::(unique)::i

}

namespace A {

 namespace {

 int i; // A::(unique)::i

http://en.cppreference.com/w/cpp/language/attributes

 int j; // A::(unique)::j

 }

 void g() { i++; } // A::unique::i++

}

using namespace A; // introduces all names from A into global namespace

void h() {

 i++; // error: ::(unique)::i and ::A::(unique)::i are both in scope

 A::i++; // ok, increments ::A::(unique)::i

 j++; // ok, increments ::A::(unique)::j

}

Even though names in an unnamed namespace may be declared with external
linkage, they are never accessible from other translation units because their
namespace name is unique.

(until
C++11)

Unnamed namespaces as well as all namespaces declared directly or indirectly
within an unnamed namespace have internal linkage, which means that any name
that is declared within an unnamed namespace has internal linkage.

(since
C++11)

 Using-declarations

Introduces a name that is defined elsewhere into the declarative region where this using-
declaration appears.

using typename(optional) nested-name-specifier
unqualified-id ;

(until C+
+17)

using declarator-list ; (since C+
+17)

nested-
name-
specifier

-
a sequence of names and scope resolution operators ::, ending with a
scope resolution operator. A single :: refers to the global namespace.

unqualified-
id

- an id-expression

typename -
the keyword typename may be used as necessary to resolve dependent
names, when the using-declaration introduces a member type from a base
class into a class template

declarator-
list

-

comma-separated list of one or more declarators of the form
typename(optional) nested-name-specifier unqualified-id. The last declarator
may be an ellipsis, although that form is only meaningful in derived class
definitions

Using-declarations can be used to introduce namespace members into other
namespaces and block scopes, or to introduce base class members into derived class
definitions.

http://en.cppreference.com/w/cpp/language/using_declaration
http://en.cppreference.com/w/cpp/language/using_declaration
http://en.cppreference.com/w/cpp/language/dependent_name
http://en.cppreference.com/w/cpp/language/dependent_name
http://en.cppreference.com/w/cpp/language/identifiers
http://en.cppreference.com/w/cpp/language/storage_duration#Linkage

A using-declaration with more than one using-declarator is equivalent to a
corresponding sequence of using-declarations with one using-declarator.

(since C+
+17)

For the use in derived class definitions, see using declaration.

Names introduced into a namespace scope by a using-declaration can be used just like
any other names, including qualified lookup from other scopes:

void f();

namespace A {

 void g();

}

namespace X {

 using ::f; // global f is now visible as ::X::f

 using A::g; // A::g is now visible as ::X::g

 using A::g, A::g; // (C++17) OK: double declaration allowed at namespace scope

}

void h()

{

 X::f(); // calls ::f

 X::g(); // calls A::g

}

If, after the using-declaration was used to take a member from a namespace, the
namespace is extended and additional declarations for the same name are introduced,
those additional declarations do not become visible through the using-declaration (in
contrast with using-directive). One exception is when a using-declaration names a class
template: partial specializations introduced later are effectively visible, because their
lookup proceeds through the primary template.

namespace A {

 void f(int);

}

using A::f; // ::f is now a synonym for A::f(int)

namespace A { // namespace extension

 void f(char); // does not change what ::f means

}

void foo() {

 f('a'); // calls f(int), even though f(char) exists.

}

void bar() {

 using A::f; // this f is a synonym for both A::f(int) and A::f(char)

 f('a'); // calls f(char)

http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/using_declaration

}

Using-declarations cannot name template-id, namespace, or a scoped enumerator. Each
declarator in a using-declaration introduces one and only one name, for example using-
declaration for an enumeration does not introduce any of its enumerators.

All restrictions on regular declarations of the same names, hiding, and overloading rules
apply to using-declarations:

namespace A {

 int x;

}

namespace B {

 int i;

 struct g { };

 struct x { };

 void f(int);

 void f(double);

 void g(char); // OK: function name g hides struct g

}

void func() {

 int i;

 using B::i; // error: i declared twice

 void f(char);

 using B::f; // OK: f(char), f(int), f(double) are overloads

 f(3.5); // calls B::f(double)

 using B::g;

 g('a'); // calls B::g(char)

 struct g g1; // declares g1 to have type struct B::g

 using B::x;

 using A::x; // OK: hides struct B::x

 x = 99; // assigns to A::x

 struct x x1; // declares x1 to have type struct B::x

}

If a function was introduced by a using-declaration, declaring a function with the same
name and parameter list is ill-formed (unless the declaration is for the same function). If
a function template was introduced by a using-declaration, declaring a function template
with the same name, parameter type list, return type, and template parameter list is ill-

http://en.cppreference.com/w/cpp/language/enum

formed. Two using-declarations can introduce functions with the same name and
parameter list, but if a call to that function is attempted, the program is ill-formed.

namespace B {

 void f(int);

 void f(double);

}

namespace C {

 void f(int);

 void f(double);

 void f(char);

}

void h() {

 using B::f; // introduces B::f(int), B::f(double)

 using C::f; // introduces C::f(int), C::f(double), and C::f(char)

 f('h'); // calls C::f(char)

 f(1); // error: B::f(int) or C::f(int)?

 void f(int); // error: f(int) conflicts with C::f(int) and B::f(int)

}

If an entity is declared, but not defined in some inner namespace, and then
declared through using-declaration in the outer namespace, and then a definition
appears in the outer namespace with the same unqualified name, that definition is
a member of the outer namespace and conflicts with the using-declration:

namespace X {

 namespace M {

 void g(); // declares, but doesn't define X::M::g()

 }

 using M::g;

 void g(); // Error: attempt to declare X::g which conflicts with X::M::g()

}

More generally, a declaration that appears in any namespace scope and
introduces a name using an unqualified identifier always introduces a member into
the namespace it's in and not to any other namespace. The exceptions are explicit
instantiations and explicit specializations of a primary template that is defined in
an inline namespace: because they do not introduce a new name, they may use
unqualified-id in an enclosing namespace.

(since
C+
+14)

 Using-directives

A using-directive is a block-declaration with the following syntax:

http://en.cppreference.com/w/cpp/language/declarations

attr(optional) using namespace nested-name-specifier(optional)
namespace-name ;

(1
)

attr(C++11) - any number of attributes that apply to this using-directive

nested-name-
specifier

-
a sequence of names and scope resolution operators ::, ending with a
scope resolution operator. A single :: refers to the global namespace.

namespace-
name

-
a name of a namespace. When looking up this name, lookup considers
namespace declarations only

Using-directives are allowed only in namespace scope and in block scope. From the point
of view of unqualified name lookup of any name after a using-directive and until the end
of the scope in which it appears, every name from namespace-name is visible as if it
were declared in the nearest enclosing namespace which contains both the using-
directive and namespace-name.

Using-directive does not add any names to the declarative region in which it appears
(unlike the using-declaration), and thus does not prevent identical names from being
declared.

Using-directives are transitive for the purposes of unqualified lookup: if a scope contains
a using-directive that nominates a namespace-name, which itself contains using-
directive for some namespace-name-2, the effect is as if the using directives from the
second namespace appear within the first. The order in which these transitive
namespaces occur does not influence name lookup.

namespace A {

 int i;

}

namespace B {

 int i;

 int j;

 namespace C {

 namespace D {

 using namespace A; // all names from A injected into global namespace

 int j;

 int k;

 int a = i; // i is B::i, because A::i is hidden by B::i

 }

 using namespace D; // names from D are injected into C

 // names from A are injected into global namespace

 int k = 89; // OK to declare name identical to one introduced by a using

 int l = k; // ambiguous: C::k or D::k

 int m = i; // ok: B::i hides A::i

 int n = j; // ok: D::j hides B::j

 }

}

http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/scope
http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/attributes

If, after a using-directive was used to nominate some namespace, the namespace is
extended an additional members and/or using-directives are added to it, those additional
members and the additional namespaces are visible through the using-directive (in
contrast with using-declaration)

namespace D {

 int d1;

 void f(char);

}

using namespace D; // introduces D::d1, D::f, D::d2, D::f,

 // E::e, and E::f into global namespace!

int d1; // OK: no conflict with D::d1 when declaring

namespace E {

 int e;

 void f(int);

}

namespace D { // namespace extension

 int d2;

 using namespace E; // transitive using-directive

 void f(int);

}

void f() {

 d1++; // error: ambiguous ::d1 or D::d1?

 ::d1++; // OK

 D::d1++; // OK

 d2++; // OK, d2 is D::d2

 e++; // OK: e is E::e due to transitive using

 f(1); // error: ambiguous: D::f(int) or E::f(int)?

 f('a'); // OK: the only f(char) is D::f(char)

}

 Notes

The using-directive using namespace std; at any namespace scope introduces every name
from the namespace std into the global namespace (since the global namespace is the
nearest namespace that contains both std and any user-declared namespace), which
may lead to undesirable name collisions. This, and other using directives are generally
considered bad practice at file scope of a header file.

 Example

This example shows how to use a namespace to create a class that already has been
named in the std namespace.

Run this code

#include <vector>

namespace vec {

 template< typename T >

 class vector {

 // ...

 };

} // of vec

int main()

{

 std::vector<int> v1; // Standard vector.

 vec::vector<int> v2; // User defined vector.

 v1 = v2; // Error: v1 and v2 are different object's type.

 {

 using namespace std;

 vector<int> v3; // Same as std::vector

 v1 = v3; // OK

 }

 {

 using vec::vector;

 vector<int> v4; // Same as vec::vector

 v2 = v4; // OK

 }

 return 0;

}

 Defect reports

The following behavior-changing defect reports were applied retroactively to previously
published C++ standards.

http://en.cppreference.com/w/cpp/container/vector

	Namespaces
	[edit] Syntax
	[edit] Explanation
	[edit] Namespaces
	Inline namespaces
	[edit] Unnamed namespaces
	[edit] Using-declarations
	[edit] Using-directives

	[edit] Notes
	[edit] Example
	[edit] Defect reports

