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Abstract
With proper management, Autonomous Mobility-
on-Demand (AMoD) systems have great potential
to satisfy the transport demands of urban popu-
lations by providing safe, convenient, and afford-
able ridesharing services. Meanwhile, such sys-
tems can substantially decrease private car owner-
ship and use, and thus significantly reduce traffic
congestion, energy consumption and carbon emis-
sions. To achieve this objective, an AMoD system
requires private information about the demand from
passengers. However, due to self-interestedness,
passengers are unlikely to cooperate with the ser-
vice providers in this regard. Therefore, an online
mechanism is desirable if it incentivizes passengers
to truthfully report their actual demand. For the
purpose of promoting ridesharing, we hereby intro-
duce a posted-price, integrated online ridesharing
mechanism (IORS) that satisfies desirable proper-
ties such as ex-post incentive compatibility, indi-
vidual rationality and budget-balance. Numerical
results indicate the competitiveness of IORS com-
pared with two benchmarks, namely the optimal as-
signment and an offline, auction-based mechanism.

1 Introduction
The rise of private car ownership and use has brought many
social and environmental challenges, including traffic conges-
tion, increased greenhouse gas emissions [Poudenx, 2008].
One possible solution to address the challenges is to pro-
mote ridesharing [Furuhata et al., 2013; Caulfield, 2009;
Levofsky and Greenberg, 2001] among passengers by pro-
viding incentives (e.g., lower fares for the shared trips than
individual trips) to them. In such a scenario, a limited number
(depending on the seat capacity of the vehicle) of passengers
who have similar itineraries share a ride and split the fares.
Ridesharing (as shown in Figure 1) increases the occupancy
of vehicles during traveling, making it possible to transport
more passengers with fewer vehicles running on the roads.

Rideshare experiences can be significantly improved as
autonomous vehicle technologies mature. This is because
AMoD systems have the potential to provide safe, con-
venient, and affordable mobility solutions for passengers,

Figure 1: A simple scenario of ridesharing: dashed lines in-
dicate the real demand; solid lines with arrow indicate actual
routes.

while reducing greenhouse emissions and private car own-
ership [Mitchell, 2010; Chong et al., 2013; Shen and Lopes,
2015; Spieser et al., 2014]. Unlike traditional mobility-on-
demand systems (e.g., taxis, shuttles), an AMoD system is
equipped with a fleet of self-driving, electric cars with no
drivers needed. This enables seamless cooperation between
the information center and the autonomous vehicles (AVs).

Several mechanisms [Kleiner et al., 2011; Kamar and
Horvitz, 2009; Cheng et al., 2014; Zhao et al., 2015]
have been introduced to promote ridesharing in traditional
mobility-on-demand systems. These mechanisms require
passengers to directly reveal the valuation of the rides. While
interesting and insightful from a theoretical perspective, they
may not work well in practice since they require passen-
gers to reveal the exact value of their rides, which could be
problematic [Naor et al., 1999; Larson and Sandholm, 2001;
Babaioff et al., 2015]. In this case, posted-price mechanisms
are more appealing because passengers only need to accept
offers with value greater than the posted price, without re-
vealing their actual valuations to service providers.

Some of the mechanisms require additional constraints
(e.g., dual ride shares only, linear in commitment) to satisfy
desirable properties such as strategy-proofness and budget-
balance [Kleiner et al., 2011; Zhao et al., 2015]. Besides,
many mechanisms assume that passengers are only moti-
vated by monetary incentives (i.e., lower fares) [Kleiner et
al., 2011; Kamar and Horvitz, 2009; Cheng et al., 2014;
Zhao et al., 2015]. They neglect the fact that non-monetary
factors such as time, comfortability and privacy, are also
important, or even critical when people make decisions on
whether to use the service or not.

Another drawback of these mechanisms is that they pro-
cess the ride requests in batch and do not work in online en-
vironment [Kleiner et al., 2011; Kamar and Horvitz, 2009;
Cheng et al., 2014; Zhao et al., 2015]. In AMoD systems,



service providers are committed to offering an immediate re-
sponse to each request sent by passengers via a smart device.
Besides, they assume that the demand is fixed without consid-
eration of the dynamic nature of demand responsive systems.

A desirable mechanism is expected to be truthful and on-
line [Parkes and Singh, 2004; Gallien, 2006; Nisan et al.,
2007]. It should be able to provide a fare quote immedi-
ately after the submission of a request. It needs to consider
major non-monetary factors (e.g., latest departure time) as
well as the dynamic nature of demand-driven systems. How-
ever, such a mechanism is yet to be designed. To bridge
the gap and transcend conventional transport models like pri-
vate car ownership, we introduce a truthful online mech-
anism called IORS for AMoD systems. We implement a
simple, abstracted, yet powerful simulator that enables effi-
cient modeling of ridesharing in AMoD systems. Numeri-
cal results show that the IORS mechanism outperforms the
cutting-edge auction-based mechanism for last-mile mobility
systems [Cheng et al., 2014] substantially. It has a very close
performance compared to the optimal solution, but requires
a shorter time to compute and requires no future knowledge
about the demand.

2 Ridesharing in AMoD Systems
An AMoD system (see Figure 2) can be viewed as a multi-
agent system consisting of an information center, a fleet of au-
tonomous vehicle agents, and self-interested passengers who
dynamically enter and exit the system. The working princi-
ple of the AMoD system is straightforward: when a passen-
ger needs a ride, she sends the ride request to the information
center using a smart device. This initiates the demand for mo-
bility. The information center next computes a fare quote and
sends it to the passenger. If the passenger accepts the fare es-
timate, the information center then calculates an assignment.
As long as a plan has been calculated, it will be sent to both
the AV assigned and the passenger who has just submitted
the request. Both the passenger and the AV are committed
to executing it. Otherwise, the passenger will be subject to
penalties.

Figure 2: An abstraction of ridesharing in an AMoD system
operating in a grid city.

3 The Online Mechanism
3.1 Preliminaries
In our work we consider discrete time T = {0, 1, 2, ...}, with
passengers that arrive and depart over time. Without loss of

generality, we assume that the AVs never exit the AMoD sys-
tem. The information center has full knowledge of the AVs at
each time. However, passengers’ demand information is pri-
vate and hidden from the center. The mechanism designer
should incentivize passengers to truthfully reveal their de-
mand for better system-wide optimization.

In our model we make a realistic assumption that the pas-
sengers are impatient [Horn, 2002]. They will leave the
AMoD system and switch to other alternatives if the pickup
time is later than their latest departure time.

Let It denote a group of passengers who have mobility de-
mand at time t ∈ T . At each time, a passenger i ∈ It submits
a request rti ∈ Rt to the information center. The request rti
can be represented as a tuple (oi, di, ti, t̄i), where oi, di, ti
and t̄i are passenger i’s origin, destination, arrival time and
latest departure time, respectively. Here, ti = t. To quantify
the transport demand, we introduce the effective demand `i,
which indicates the minimum distance from passenger i’s ori-
gin oi and destination di. Assuming that the effective demand
is independent of request submission time, we have:

∀t ∈ T , i ∈ It, `t+1
i = `ti . (1)

Equation 1 indicates that the effective demand of passenger
i ∈ It will not change if the passenger delays its request
submission from time t to time t+ 1.

Once a passenger i has sent her request rti , the system
needs to provide a fare estimate qrti to the passenger immedi-
ately, which enables the passenger to make a prompt decision
on whether to accept the quote or not. It is important to note
that the quote is the upper bound of the fare rather than the
final payment. The passenger only accepts the service if the
quote is lower than the amount that she is willing to pay. If the
passenger accepts the quote and if the system is able to pro-
vide the service given the time and routing constraints, she
will be serviced with an assignment provided. A final pay-
ment prti will be calculated upon the completion of the ride.
Otherwise, the request will be rejected.

In our model we make the passengers who use the ride ser-
vice split the operational cost of the vehicles. This enables the
AMoD system to provide service without seeking for exter-
nal subsidies. The mechanism designer’s goal is to minimize
the cost per unit effective demand. Since the operational cost
is split by all the passengers, this objective reflects the social
welfare. The mechanism needs to collect truthful information
about the requests from passengers. However, passengers are
selfish and motivated to minimize their own cost for the rides.
For instance, they may delay their request submissions, or
claim a shorter waiting time to reduce their cost. Therefore,
incentives should be provided to counter the manipulations.
Let Ct denote the total cost of the system incurred up to now
from t = 0, and I ′t ⊆ It be the set of passengers been ser-
viced at t. We have the cost per demand of the system:

W ′ =
Ct∑

t′∈[0,t]

∑
i∈I′t

′ `i
. (2)

Let W = 1/W ′, the mechanism designer’s goal is equivalent
to maximizing the social welfare W . Initially, the total cost
is zero. That is, C0 = 0. We assume that the total cost of the



systemCt is non-decreasing. It quantifies the minimum oper-
ational cost that the system needs to transport the passengers.
Since the total cost is independent of the time and the orders
of the request submissions, the following inequation holds:

∀t ∈ T , Ct+1 ≥ Ct . (3)
If the requests are delayed from t to t+ 1:

∀t ∈ T , Ct+1 = Ct . (4)
Let δrti denote the increase on the operational cost if passen-
ger i is serviced when she submits the request rti at time t, the
following equation always holds for every t ∈ T :

Ct+1 − Ct =
∑
t′=t+1

i∈I′t
′

δrt′i
. (5)

Equation 5 shows that the increase on the total operational
cost from time t to time t+1 always equals to the summation
of the marginal cost that is incurred by the requests being
served at time t+ 1.

Let V denote the set of vehicles in operation and Vt ⊆ V
be the set of vehicles that have at least one seat available at
time t. Initially, we divide the vehicles into N groups (or
coalitions), where N = |V|. At each time, a request r ∈ Rt
is added into a group X tv ⊆ Xt according to the mechanism
policy, where Xt is the set of all groups at time t. At time t, all
passengers in a group share the same fare rate (cost per unit
demand). Let ρ denote the cost per unit demand, we have:

ρX tv = ρrti , (6)

where (i ∈ {i | rti ∈ X tv , t ∈ T }).

3.2 IORS Mechanism
The IORS mechanism consists of three parts: fare estimation,
pickup assignment and payment calculation. In the fare esti-
mation process, the mechanism calculates a quote for each re-
quest. In the pickup assignment phase, the mechanism com-
putes an optimal plan that minimizes the cost per unit de-
mand. Finally, the mechanism provides payments immedi-
ately after successful completion of the rides.

Fare Estimation
As the passengers arrive and depart dynamically, the mecha-
nism can only rely on the known information to compute the
upper bound of the fare. The fare estimation process is de-
scribed as follows (as shown in Algorithm 1): for each request
rti at time t, the mechanism first checks if a vehicle v (with
vacancies) satisfies the passenger’s latest departure time. If
such a vehicle is found, then the mechanism compares the
cost per unit demand before and after adding the request rti
into the coalition, respectively. If the cost per unit demand
decreases, then the fare is calculated and stored in a set Q′.
The mechanism selects the maximum fare in the set as the
quote. Otherwise, the system rejects the request. Note that
the mechanism picks the highest (instead of the lowest) cost
per unit demand as the upper bound of the fare estimate. This
is because the mechanism needs to adjust the assignments so
that the system can produce the lowest cost per unit demand
in general. Besides, it is a necessary condition for individual
rationality and incentive compatibility. The algorithm takes
O(n3) time in the worst case.

Algorithm 1: The Fare Estimation Algorithm
1 function estimate (t,Rt);

Input : t - Time;Rt - A set of requests from
passengers It at time t.

Output : QRt -The fare estimate for requestsRt.
2 QRt ← ∅;
3 while rti ∈ Rt do
4 Q′ ← ∅;
5 while v ∈ Vt do

/* t′ is the estimated pickup
time needed to service
passenger it using vehicle v

*/
6 Compute t′;
7 if t′ ≤ t̄i then
8 Compute ρX t−1

v ∪{rti}
;

9 if ρX t−1
v ∪{rti}

< ρX t−1
v

then
10 q′ ← `tiρX tv ;
11 Q′ ← Q′ ∪ {q′};
12 end
13 end
14 end
15 if Q′ 6= ∅ then
16 q ← argmax

q′∈Q′
q′;

17 QRt ← QRt ∪ {(rti , q)};
18 end
19 end
20 return QRt .

Pickup Assignment
Let nvt denote the number of seats available in vehicle v at
time t. Each vehicle can only service at most Nv passengers,
where N is the seat capacity of the vehicle. That is, 0 ≤
nvt ≤ Nv . When there are multiple requests that decrease
the cost per unit demand of a coalition, the coalition selects
the one that produces the lowest cost per unit demand. If
there is a tie, the mechanism breaks it by choosing the one
with the highest demand at random. The pickup assignment
procedure is shown in Algorithm 2. The mechanism selects
the nt requests that produces the lowest cost per unit demand,
where nt is determined as following: nt = min{nvt , nRt},
where nRt is the number of requests submitted. The time
complexity of Algorithm 2 is O(n2 log n).

Payment Calculation
When a passenger accepts a fare quote and is not assigned
with a vehicle, her request will be added to time t + 1 if the
threshold t̄ satisfies. In this process, the mechanism assumes
that all the passengers accept the fare estimate. This is be-
cause if a passenger rejects the quote, the mechanism simply
ignores the request and assumes that the passenger never sub-
mits it. We assume that the system can calculate the marginal
cost and the optimal routes as quickly as necessary, although
it might be time-consuming in real-world application due to
limited computational power and the complexity of the traffic



Algorithm 2: The Pickup Assignment Algorithm

1 function assign (t,R′t);
Input : t - Time;R′t - A set of requests from

passengers It who accept the fare quotes at
time t.

Output : Πt-The set of assignment.
2 Πt ← ∅;
3 A← ∅;
4 while v ∈ Vt do
5 while r ∈ R′t do

/* t′ is the estimated pickup
time needed to service
passenger it using vehicle v

*/
6 Compute t′;
7 if t′ ≤ t̄i then
8 Compute ρX t−1

v ∪{r} ;
9 if ρX t−1

v ∪{r} < ρX t−1
v

then
10 c′ ← ρX tv ;
11 A ← A∪ {(v, c′)};
12 end
13 end
14 end
15 end
16 V ← Vt;
17 I ← {i | ri ∈ Rt};
18 while A 6= ∅ and V 6= ∅ and I 6= ∅ do

/* sort in ascending order of c′ */
19 A ← quicksort(A);

/* ties are broken by selecting the
one with the highest unit demand
` */

20 (v, c′)← argmin
(v,c′)∈A

c′;

21 Πt ← Πt ∪ {(v̂, r̂) | v̂ = v, cr̂ = c′};
22 A ← A \ {(v∗, c∗) | v∗ = v, (v∗, c∗) ∈ A};
23 if nv < 1 then
24 V ← V \ {v};
25 end
26 I ← I \ {i | cri = c′, ri ∈ R′t};
27 end
28 return Πt.

dynamics. However, it can be computed with meta heuris-
tics [Hansen and Zhou, 2007]. At time t, the cost per unit
demand for all requests assigned to vehicle v under the as-
signment of πv ∈ Πt is determined as following:

ρX tv =

∑
t′∈[0,t]

∑
r∈{r|(v,r)∈Πt′} δr∑

t′∈[0,t]

∑
r∈{r|(v,r)∈Πt′} `r

. (7)

Therefore, the final payment of passenger i at time t is cal-
culated as following:

pti = `iρX tv , (8)

where pti can be calculated in O(n2T log n) time.

Ex-post Incentive Compatibility
We show that the IORS mechanism satisfies ex-post incentive
compatibility.
Lemma 3.1. A passenger can not decrease her cost by de-
laying the submission of the request, provided that all other
passengers report their demand truthfully and do not change
their decisions on fare quotes. That is, for all τ1, τ2, t ∈ T
and submissions R and R′, where 0 ≤ τ1 < τ2 ≤ t,
R = {R0, ..Rτ1 ,Rτ2 , ...,Rt}, and

R′(t) =

 Rτ1 \ {rτ1i } : t = τ1
Rτ2 ∪ {rτ1i } : t = τ2
R(t) : otherwise ,

(9)

We have:
ptR(τ1) ≤ p

t
R′(τ2) (10)

Proof. Depending on whether ri is serviced or not, we dis-
tinguish two cases:
• The request is not serviced: if the passenger delays her

request from τ1 to τ2, then her latest departure time
ˆ̄τ1 = τ̄1 − 1 < τ̄1. If the pickup time t = τ̄1, then she
will not be serviced at time τ2, which is obviously less
favorable than being serviced. Another situation is that
the addition of the request at time τ2 does not decrease
the cost per unit demand of the coalitions at time τ2, or
the new cost per unit demand is less than the threshold
determined by Algorithm 2.
• The request is serviced: If the passenger delays her re-

quest from τ1 to τ2. Assuming that,

ptR(τ1) > ptR′(τ2) (11)

We prove the theorem by contradiction. If 0 ≤ τ < τ1,
we have R′(τ) = R(τ). By equation 1 and 4, the opera-
tional cost and the total unit demand are independent of
the request submission time. That is, C ′ = C,

∑
`′ =∑

`. By equation 5, 7 and 8, we have ptR(τ) = ptR′(τ).
Thus, inequation 11 does not hold. This is also true if
τ2 < τ ≤ t. If τ1 < τ ≤ τ2, since R′(τ) = Rτ1 \ {rτ1i },
we have the cost per unit demand ρR(τ1) ≤ ρRτ1\{rτ1i },
and the total demand `R(τ1) < `Rτ1\{rτ1i }. By multi-
plying the left and right sides of the two inequations,
we get ρR(τ1)`R(τ1) ≤ ρRτ1\{rτ1i }`Rτ1\{r

τ1
i }

. That is,
ptR(τ) ≤ ptR′(τ). Hence, inequation 11 does not hold
when τ2 < τ ≤ t. Therefore, the assumption is invalid
and inequation 10 holds.

By incorporating the above cases, we prove the lemma.

Lemma 3.2. The passenger can not decrease her cost by
misreporting its latest departure time, provided that all other
passengers report their demand truthfully and do not change
their decisions on fare quotes. That is,

p′r ≤ pr, (∀ˆ̄t 6= t̄). (12)

Proof sketch. If passenger claims an earlier latest departure
time (i.e., ˆ̄t < t̄), according to Algorithm 1 and 2, the search
space of the vehicles may be reduced and the request might



be rejected. If ˆ̄t > t̄, the search space will be increased.
However, a passenger will reject the assignment if the pickup
time exceeds the t̄ according to the assumption made in sec-
tion 3.1. By equation 1, 4, 5, 7 and 8, the fare ˆ̄p does not
increase in either scenario.

Theorem 3.3. The IORS mechanism is ex-post incentive
compatible provided that all other passengers report their
demand truthfully and do not change their decisions on fare
quotes.

Proof sketch. A passenger i can not lie about her origin oui
and destination di. She is unable to claim an earlier arrival
ti. According to Lemma 3.1, she will not benefit from delay-
ing the request submission provided that all other passengers
report their demand information truthfully and do not change
their decisions on whether to accept the quotes or not. The
passenger will not gain from misreporting the latest departure
time according to lemma 3.2.

Discussion
Note that the IORS mechanism does not require passengers
to specify the deadlines for the latest delivery to their destina-
tions. This is because passengers are likely to misreport the
deadlines to rule out potential ridesharing assignments (e.g.,
by claiming an earlier deadline). However, mechanism de-
signers may set constraints (e.g., the longest time, the max-
imum number of passengers, and the maximum rate) on a
shared ride if necessary.

The IORS mechanism also satisfies other properties such
as individual rationality and budget balance. For example,
it is individual rational because passengers’ final payments
never exceed their quotes. The budget balance property is met
for the reason that the total cost is split by the passengers who
are provided with the ride services. Due to space limitations,
we omit the poofs for these properties.

4 Benchmark
For evaluation purposes, we compute the optimal assignment
as a benchmark to evaluate the efficiency of the IORS mech-
anism. The goal of the optimal assignment is to minimize
the overall cost per unit demand (equivalent to maximiz-
ing W ) under the constraints in the AMoD system. This
is a minimum maximal matching problem, which is NP-
hard [Hopcroft and Karp, 1973], and cannot be solved in
polynomial time. We use a linear programming solver Lp-
Solve solver [Berkelaar et al., 2004] for optimization in the
experiment.

Auction-based mechanisms have been proven to be effi-
cient in some of the existing ridesharing systems such as car-
pooling and shuttles [Kleiner et al., 2011; Cheng et al., 2014;
Coltin and Veloso, 2013; Kamar and Horvitz, 2009]. Some
of them even have very close performance compared with
the optimal solution [Cheng et al., 2014]. In our work, we
compare the performance of the IORS with the state-of-the-
art, offline, auction-based mechanism (bottom-up) described
in [Cheng et al., 2014]. The auction-based mechanism can
not be solved in polynomial time.

5 Experimental Results
To evaluate the performance of the IORS mechanism, we de-
veloped an AMoD simulator to model the transportation sys-
tem of a grid city with 101 × 101 blocks (a scenario similar
to Figure 2).

5.1 Experimental Settings
In the experiment, we assumed that the number of AVs in the
system is fixed. We set the number N = 1000. For each
simulation, the system ran for 500 rounds unless specified
otherwise. For each round, we generated a random number
of requests Rt ∈ R. We initialized R with a set of N =
500 integers randomly drawn from a normal distribution with
mean µ = 1000 and standard deviation 100 (see Figure 3a).
We assumed that each AV can transport up to four passengers
at the same time.

We then generated the Rt requests respectively using the
following method: the request time is the current round num-
ber; the waiting time is randomly drawn from the range 10 to
100; both the origins and destinations are randomly selected
within a radius of 50 blocks in the grid. The operational cost
per unit distance (block) is 1. The speeds for all vehicles are
the same: 0.5 block per unit time (round). Initially, all the
AVs depot at the center of the grid city. At time t = 0, the
AVs become available for servicing passengers.

To be fair for evaluation and in the interest of saving time,
we calculated the shortest paths between any two vertices in
the city grid using the A∗ algorithm [Hart et al., 1968] and
saved it into a dictionary for further use in all the simulations

We ran all the simulations on a 2.9GHz quad-core machine
with a 32GB RAM.

5.2 Results and Discussion
We performed simulations using the IORS mechanism. For
comparison purposes, we computed the optimal assignment
under the same experimental settings as a benchmark. we
also conducted experiments on an AMoD system with the of-
fline, auction-based mechanism described in section 4. To
counter the effect of the fluctuations caused by the random-
ization techniques used, we ran all the experiments 20 times
and calculated the mean and the standard deviation of the
metrics evaluated.

We computed the social welfare scores over time for the
systems using one of the following mechanisms: IORS mech-
anism, auction-based mechanism and the optimal assignment
solution. The result (see Figure 3b) clearly shows that the
IORS mechanism performs significantly better (with a 95%
confidence interval) than the auction-based mechanism, with
an increase of 22.73%. Although it is a little inferior to the
optimal solution, it performs fairly well (with a score equals
to 93.62% of the optimal solution) with 79.35% less compu-
tational time on average (see Figure 3c ) and no future knowl-
edge of demand required.

The IORS mechanism adds a request only if this addition
decreases the cost per unit demand of a group. However, it
might suffer from local minima and produce suboptimal so-
lutions due to a myopic view of the demand. The auction-
based mechanism, on the other hand, processes the aggre-
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Figure 3: A comparison of demand distribution, the social welfare scores and computational time of a system with three
different approaches: the IORS, an auction-based mechanism and the optimal solution.
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Figure 4: A comparison of the performance of a system with three approaches: the IORS, an auction-based mechanism, and
the optimal solution.

gated requests at once. It removes the requests with the low-
est ranks. Although the mechanism might make better plans
than the IORS mechanism at processing time because they
have a better knowledge of demand distributions, it performs
worse than the IORS at all the other time.

The revenue of IORS system is slightly lower than the op-
timal system, and much higher than the auction-based system
(see Figure 4a). The effective demand of the system with the
IORS mechanism fluctuates around 0.7, while the demand for
optimal solution first increases and then drops down to a level
very close to that of the IORS system. This is due to the in-
creased demand from passengers. As shown in Figure 4b, the
demand for auction-based system keeps increasing and then
reaches a plateau. For each time measured, the scores of the
auction-based system are the lowest.

When the demand is high, obviously, it is effective to in-
crease the supply (i.e., number of vehicles) at first. However,
once the number of the AV fleet reaches some point, it will not
help to improve the social welfare (i.e.,W ) (see Figure 4c).

In summary, the IORS mechanism outperforms the of-
fline, auction-based mechanism overwhelmingly in promot-
ing ridesharing in AMoD systems. Although it is still inferior
to the optimal solution, it can achieve a very close perfor-
mance with substantially less computational time needed and
no future knowledge of demand required.

6 Conclusions

To promote ridesharing in AMoD systems, we introduce a
posted-price, integrated online mechanism, namely IORS.
We show that IORS is ex-post incentive compatible. Simu-
lation results demonstrate its competitiveness compared with
the optimal assignment solution and the offline, auction-
based mechanism. Although IORS is tailored for AMoD sys-
tems, it is applicable to traditional demand responsive trans-
port systems such as taxis and shuttles, provided that the dis-
patchers have full control over the vehicles. Besides, IORS
can be applied to distributed scenarios by dividing a city into
multiple zones where each zone has a control center individ-
ually processing the requests.

Future directions include coalition structure generation for
optimal groups of shared riders, mechanism design to address
ethics and privacy problems in ridesharing. Another direction
is to develop more complex and realistic simulation platforms
as benchmarks for future evaluation.
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