
Learning to Teach and Follow in Repeated Games

Jacob W. Crandall and Michael A. Goodrich
Computer Science Department

Brigham Young University
Provo, UT 84602

crandall, mike@cs.byu.edu

Abstract

The goal of a learning agent playing a repeated game is to
maximize its payoffs over time. In repeated games with other
learning agents, this often requires that an agent must learn
to offer and accept profitable compromises. To do so, past
research suggests that agents must implement bothteaching
and following strategies. However, few algorithms success-
fully employ both kinds of strategies simultaneously. In this
paper, we present an algorithm (called SPaM) that employs
both kinds of strategies simultaneously in 2-player matrix
games when the complete game matrix is observable. We
show (empirically) that SPaM learns quickly and effectively
when associating with a large class of agents, including self,
best response learners, and (perhaps) humans.

Introduction
Learning in repeated matrix games has been studied exten-
sively in the literature. Despite this research, “state-of-the-
art” learning algorithms continue to learn strategies that pro-
duce low payoffs in many simple matrix games, particularly
games that model important social dilemmas (e.g. the it-
erated prisoner’s dilemma). This is largely because these
learning algorithms are unable to both offer and accept com-
promises in these games. To be successful in many games,
an agent must learn to offer and accept profitable compro-
mises when associating with many different agents.

Past algorithms designed for repeated games generally
fall into one of two categories. The first category of algo-
rithms, which we will callfollower algorithms, adapt their
strategies with the goal of finding a best response to the play
of their associate(s). This approach allows an agent to accept
good compromises offered by associates. However, follower
agents are often unable to offer acceptable compromises to
others. Consequently, follower agents often earn low aver-
age payoffs over time in many important games. The sec-
ond category of algorithms, which we will callteacheralgo-
rithms, seek to “teach” their associate(s) to play acceptable
(for the teacher) strategies. These agents are often capable
of offering acceptable compromises, but are generally un-
able to accept profitable compromises suggested by others.

In this paper, we present a technique for com-
bining teacher and follower strategies into a single

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

agent/algorithm. We call this algorithm SPaM (Social and
Payoff Maximization).We show that combining follower and
teacher attributes as does SPaM results in an agent re-
ceiving high average payoffs over time when associating
with a large variety of learning agents (including self, best-
response learners, and, perhaps, humans) in many important
2-agent matrix games. Prior preliminary research also sug-
gests that SPaM can be implemented effectively in multi-
state repeated games (Crandall & Goodrich 2004).

Background and Related Work
As we mentioned in the introduction, past work in multia-
gent learning for repeated general-sum games can be sepa-
rated into two categories: follower algorithms and teacher
algorithms. In this section, we review some of this work.

Follower Algorithms
Development of the theory of follower algorithms (or adap-
tive learners (Camerer, Ho, & Chong 2002)) has occupied
the energy of most research in multiagent learning. Follower
approaches include fictitious play (Fudenberg & Levine
1998), Q-learning (Watkins 1989; Sandholm & Crites 1995;
Littman & Stone 2001), Q-learning variants (e.g., (Littman
1994; 2001)), policy gradient methods (e.g., (Bowling &
Veloso 2002)), and no-regret algorithms (e.g., (Jafariet al.
2001; Bowling 2004)).

The goal of follower algorithms is typically to learn a best
response to the assumed stationary strategies of other agents.
When all agents play a best response to the strategies of the
other agents, the results is a Nash equilibrium (NE). How-
ever, achieving this goal has been challenging. Despite some
successes, follower algorithms have been mostly unsuccess-
ful at learning non-myopic equilibrium in repeated games.

Teacher Algorithms
Follower algorithms frequently have the characteristic of ig-
noring the payoffs of other agents in the game. This char-
acteristic is actually necessary in many important contexts
since the payoffs (and actions) of other agents may be com-
pletely unknown. However, in many other contexts, at least
some knowledge about the payoffs of other agents is avail-
able. Evidence suggests that humans do use information
about the payoffs of other agents when making decisions

(Camerer, Ho, & Chong 2002). Teacher algorithms use this
information to coax other agents to play differently.

Perhaps the most famous teacher is tit-for-tat (TFT) (Ax-
elrod 1984), which was designed for the iterated prisoner’s
dilemma. TFT plays the action played by its associate in the
previous time period. The desired result is that TFT’s asso-
ciate learns that cooperation yields higher average payoffs
over time than does defection. Thus, TFT receives higher
payoffs than it would otherwise.

The economics literature provides several important
teacher algorithms (e.g. (Camerer, Ho, & Chong 2002)).
Some of the earlier work involved reputation formation
(Kreps & Wilson 1982; Milgrom & Roberts 1982). These
works show that, in repeated market games, a firm may ben-
efit by establishing a “tough” reputation in early rounds,
even though establishing such a reputation may produce low
immediate payoffs.

Additional teacher algorithms (called leader algorithms)
were given by Littman and Stone (2001) for 2-player matrix
games. These teacher algorithms (calledBully andGodfa-
ther) were each shown to induce desirable behavior from
certain kinds of associates in many games. UsingGodfa-
ther, Littman and Stone developed an algorithm (which we
will call Godfather++) for calculating a repeated-play NE
for 2-player matrix games (Littman & Stone 2005). We dis-
cuss this algorithm in more detail below.

Let playeri be the agent in question, and let player−i be
its associate1. Let,Aj(s) be the actions available to playerj
in states, and letat

j ∈ Aj(s) be playerj’s action at timet
(from states). Thejoint-actionat = (at

i, a
t
−i) is a vector of

the actions taken by the agents at timet.
Godfather++calculates a target solution (which may re-

quire that the agents alternate between joint-actions) which
maximizes the product of the agents’ (positive) advantages2.
Let ct

i andct
−i be the target actions (corresponding to the tar-

get solution) for playersi and−i at timet, respectively. As
long asat

−i = ct
−i, playeri playsct+1

i at timet + 1. How-
ever, if at

−i 6= ct
−i, then playeri punishesplayer−i for

the nextn (calculated from the game matrix) rounds of the
game by playing an attack strategy. This results in player−i
receiving an expected reward of no more than its minimax
value each of then punishment rounds. Thus, an agent’s
best response toGodfather++ is to playct

−i at each timet.
Godfather++ has some very nice theoretical properties,

although it does have several issues that should be addressed.
Some of these issues include the following:

1 The length of the punishment phase ofGodfather++
(denoted by the variablen) may be unnecessarily large
(as Littman and Stone acknowledge). Long punishment
phases make it difficult for a learner to determine which
of its action is being punished or rewarded (credit assign-
ment problem). Thus, to increase teaching effectivness,
the punishment phase should be as short as possible. Ad-
ditionally, the majority of learning algorithms in the lit-

1We prefer the termassociateto opponent, since the agents may
not be competing.

2The advantages of the agents are the agents payoffs minus their
minimax value.

erature typically only condition utilities on very recent
action histories, meaning that these agents are unable to
“perceive” long punishment phases.

2 Godfather++does not specify how the agents should co-
ordinate their actions when the target solution is a se-
quence of joint-actions. This means that agents may never
play cooperatively in some games.

3 The strategy used byGodfather++ in the punishment
phase (i.e., the attack strategy) does not take into account
the agent’s own payoffs. Thus, vengeance may be overly
costly. While this is not extremely problematic (in the
limit) if the associate eventually learns to cooperate, there
is no guarantee that the associate will learn to cooperate.

4 The target solution is not guaranteed to be unique. Thus,
the agents may be unable to coordinate cooperative be-
havior (particularly in self play). Additionally, a similar
(but different) solution may be proposed (and enforced)
by an associate, which the algorithm cannot learn to ac-
cept.

5 The algorithm requires complete knowledge of the game
matrix, as well as perfect knowledge of all agents’ actions.

The algorithm we present next addresses points 1-3 (at
least in part). We do not address points 4 and 5.

An Algorithm for Teaching and Following
Littman and Stone (2001) concluded that neither teacher nor
follower strategies alone are sufficient for successful multi-
agent learning. Rather, agents should employ mixtures of
teacher and follower techniques. It is, however, unclear how
teacher and follower strategies can be mixed successfully.
One methodology is offered by Powers and Shoham (2004;
2005), in which an agent uses a teacher strategy (either
Godfatheror Bully) in early rounds of the game. After a
deterministic number of iterations, the algorithm evaluates
whether or not the associate is responding to the teacher
strategy. If it is not, the algorithm switches to a follower
strategy. However, their approach does not take into account
both teacher and follower strategies simultaneously.

In this paper, we propose a methodology for combining
follower and teacher strategies. Although incomplete, the
methodology offers a first step towards employing follower
and teacher strategies simultaneously. We call this algorithm
SPaM (Social andPayoff Maximizing).

SPaM learns both a teacher and a follower (payoff max-
imizing) utility function. The teacher utility function esti-
mates how well actions induce “good” behavior from asso-
ciates. The follower utility function, as always, estimates the
actual material payoffs that an action yields.

LetT (s, ai) andF (s, ai) be (respectively) the teacher and
follower utilities for playing actiona from states. SPaM
usesT (s, ai) and F (s, ai) to select its actions using the
constrained maximization technique shown in Table 1. In
words,S is the set of actions that have non-negative teacher
utility (if no action has non-negative teacher utility, thenS
contains only the action with the highest teacher utility).
With high probability (i.e., probability1− η), SPaM selects
the action in the setS with the highest follower utility. With

1. S = {ai : T (s, ai) ≥ 0}
⋃
{argmaxa T (s, ai)}

2. Select actionat
i

a
t
i =


argmaxai∈S F (s, ai) with probability1− η

argmaxai
F (s, ai) with probabilityρη

random with probability(1− ρ)η

Table 1: Action selection in SPaM. In the figure,T (·) and
F (·) represent teacher and follower utilities (respectively).

a small probability (i.e., probabilityρη) SPaM selects the
action with the highest follower utility (whether or not it is
in the setS). Otherwise, SPaM explores randomly.

We now describe how SPaM learnsT (s, ai) andF (s, ai)
in repeated matrix games.3

Learning a Teacher Utility Function
The goal of ateacheralgorithm is to make player−i’s best
response desirable for the teacher. This entails that an asso-
ciate should be a) rewarded for playing “good” actions and
b) “punished” (if necessary) for deviating from those “good”
actions. For “good” actions to be player−i’s best response,
the punishment must exceed the profit of deviating.

SPaM, likeGodfather++, determines that “good” actions
contribute to a sequence of joint-actions that maximize the
product of the agents’ (positive) advantages (as justified by
Nash (1950)).4 Let this sequence of joint-actions, called the
target solution, be denoted byc and letct = (ct

j , c
t
−j) be the

joint-action whichc specifies at timet. Also, let |c| denote
the length of the sequence ofc. In games in which|c| > 1,
we must determine how agents cycle through the sequence
of joint-actions. In our current implementation,ct = ct−1 if
ct−1 is not played at timet−1. Otherwise, the current joint-
strategy of the target solution updates as inGodfather++.5

SPaM uses the notion of guilt (denotedGt
j for playerj’s

guilt at timet) to determine whether an agent should be re-
warded or punished. WhenGt

j > 0, then playerj has some
level of guilt. WhenGt

j ≤ 0, then playerj is guiltless. As
a rule, a guilty agent should be punished while a guiltless
agent should be rewarded. We describe how SPaM deter-
mines guilt below.

Let rt
j be the payoff to agentj at timet. Also, letrj(ct)

be theexpectedpayoff to agentj when the joint-actionct

is played, and letrj(c) = 1
|c|

∑
ct∈c rj(ct) be theaverage

expectedpayoff to playerj if both agents play the target
solution.

3In (Crandall & Goodrich 2004), we described how SPaM can
be used in two-player repeated multi-state games.

4The maximum possible product of the agents’ (positive) ad-
vantages in competitive games is zero. In 2-player competitive
games, a teacher algorithm has nothing to offer. Thus,T (s, a) = 1
for all pairs(s, a), meaning that the teacher utility function has no
effect on the behavior of the agent (see Table 1). The rest of this
section deals with the case in which the maximum product of the
agents’ advantages is nonzero.

5This implementation is sufficient for all games discussed in
this paper, but should be modified for the general case.

Figure 1: Tree showing how player j’s guilt value (Gj) is
updated after each round of the game.

Initially, each agent is guiltless (i.e.,G0
j = 0). Thereafter,

the guilt of each playerj is updated using the tree shown
in Figure 1, which specifies six unique cases (labeled 1-6).
Each of the six cases is represented by a unique path through
the tree. For example, case 1 is the situation in whichat

j =
ct
j , Gt

j > 0 andat
−j = ct

−j . We now explain and justify how
guilt is updated in each case.

1 The joint-actionct is played when playerj is guilty. Since
playerj is not being punished (while guilty) in this case,
its guilt would normally be maintained. However, in this
special case, to avoid the possibility that playerj may at-
tribute future punishment to the playing of the target so-
lution, playerj’s guilt is absolved.6

2 When playerj is guilty and plays cooperatively, its guilt
is updated byGt+1

j = Gt
j + rt

j − rj(c). This means that
player j’s guilt is reduced if its payoff (rt

j) is less than
rj(c). Note that ifrj(c) is at leastGt

j more thanrt
j , then

playerj’s guilt is absolved.

3 Playerj follows the target strategy while guiltless. Thus,
it remains guiltless.

4 Playerj deviates while guilty. Its guilt is updated as in
case 2, except that its guilt cannot be completely absolved
(since it deviated). Thus, its new guilt is the max of some
small valueε > 0 andGt

j + rt
j − rj(c).

5 Playerj deviates when its associate is guilty. In this case,
playerj is justified in deviating (so it remains guiltless).

6 Playerj deviates when its associate is guiltless. In this
case, playerj acquires guilt to the degree that it profits
from the deviation (the difference betweenrt

j andrj(c),
plus some small valueε > 07). Thus, if deviating yields a
profit less than or equal to -ε, an agent remains guiltless.

Note that SPaM measures its own guilt as well as its as-
sociate’s guilt. Thus, SPaM’s associate can hold SPaM ac-

6We note that this rule could possibly (in a small set of games)
allow deviating to be a best response. We leave this to future work.

7ε is added to playerj’s guilt to require that playerj be pun-
ished bymore thanit gains from deviating.

countable in the same way that SPaM holds its associate ac-
countable. In this way, SPaM can (potentially) teach and
follow simultaneously.

In short, playerj’s guilt is the (positive) profit it has ob-
tained from deviating in the past. When guilt is positive, the
agent has benefited from deviating and should be punished.
Otherwise, the agent should be rewarded (with cooperative
actions from its associate). We now specify how a teacher
utility function is constructed from the guilt values to obtain
the desired behavior.

The action selection methodology in Table 1 requires
that teacher actions have positive utility only if they induce
“good” behavior from the associate. Thus, if actiona does
not serve to induce player−i to playc−i in the future, then
Tt(s, ai) < 0. If actiona does induce player−i to playc−i

in the future, thenTt(s, ai) > 0.
In the case in which playeri’s associate is guiltless, player

i should conform to the target solution. Thus, in this case,
the teacher utilityTt(s, ai) is given by

Tt(s, ai) =
{

1 if (ai = ct
i)

−1 otherwise (1)

In the context of Table 1, Eq. (1) assures that, with at least
probability1− η, SPaM will playct

i whenGt
−i ≤ 0.

We now turn to the case in whichGt
−i > 0. As we have

mentioned, in this case, playeri should punish player−i.
Thus, the teacher utilityTt(s, ai) is a function of how well
actiona punishes player−i. Thus,

Tt(s, ai) = r−i(ct)− E[U−i(s, ai|Gt
−i > 0)]− Ep (2)

where E[U−i(s, ai|Gt
−i > 0)] is the expected payoff to

player−i based on the empirical distribution of past actions
taken by both agents (when player−i is guilty) andEp is
the expected level of punishment.

We make the following observations about Eq. 2. First,
E[U−i(s, ai|Gt

−i > 0)] is the value of the teacher util-
ity function that is learned. Second, when the difference
r−i(ct) − E[U−i(s, ai|Gt

−i > 0)] is greater thanEp, then
Tt(s, ai) > 0. Third, when multiple actions produce sat-
isfactory punishments, SPaM will select the least costly of
those actions (see Table 1). Therefore, SPaM can lower its
own loses while punishing its associates (see point 3 of the
issues discussed in section 2).

We discussed in section 2 that the punishment phase
should be brief (if possible). The variableEp (the expected
punishment level) dictates the duration of the punishment
phase. For quick punishments, we use

Ep = min(Gt
−i, r−i(ct)−m−i), (3)

wherem−i is player−i’s minimax value. We use this value
of Ep since a) player−i need not be punished by more than
its guilt valueGt

−i and b) since player−i can guarantee it-
self a payoff ofm−i by playing its minimax strategy, an
agent should not expect to punish its associate by more than
r−i(ct)−m−i.

Follower Utility Function
The follower algorithm used by SPaM can be any follower
algorithm. However, the weaknesses of the algorithm cho-

1) Observe the game matrix; computec
2) Gi = G−i = 0, T (s, ai) = 0, F (s, ai) = 0

3) Repeat,
a) Take actionai according to Table 1
b) Observe rewardr and actionsat

i, at
−i:

i) UpdateGi andG−i using Figure 1
ii) UpdatedU−i(s, ai|G−i > 0)
iii) if G−i ≤ 0

computeT (s, ai) using Eq 1
else computeT (s, ai) using Eq 2

iv) ComputeF (s, ai)

Table 2: The complete SPaM algorithm.

sen reflect on the performance of SPaM. In general, we fa-
vor a learning algorithm which learns quickly, thus, we use a
variant of fictitious play (Fudenberg & Levine 1998) (which
we call FP). FP varies from standard fictitious play in that
it looks ahead an extra time period (rather than just the cur-
rent time) in determining the action that maximize expected
payoffs. Additionally, the previous joint-action taken by the
agents is used for states (as in the teacher utility function).

Algorithm Review
The complete algorithm is sketched in Table 2. As we
mentioned in section 2, the algorithm empirically ex-
hibits the following desirable characteristics. First, the
length of the punishment phase is minimized provided that
E[U−i(s, ai|Gt

−i > 0)] is accurate. As an example, whereas
Godfather++ requires 3 rounds of punishment in the game
battle of the sexes, SPaM typically requires no rounds of
punishment, although one or two rounds of punishment are
sometimes necessary. Second, SPaM is able to success-
fully coordinate profitable cooperative actions even in non-
deterministic environments. Third, when punishing an asso-
ciate, SPaM may select between multiple punishing actions
(provided that multiple punishing actions have been shown
to be effective). This allows SPaM to select the action that is
most profitable to it. SPaM empirically exhibits these prop-
erties while maintaining the other positive characteristics of
Godfather++(it appears).

Results
SPaM performs well when associating with a large variety
of agents. We give some of these results below.

With Automated Agents
Figure 3 shows the mean average payoffs when SPaM, FP,
and WoLF-PHC (Bowling & Veloso 2002) are matched with
each other in the three repeated matrix games show in Fig-
ure 2. In each game, the intended actions of all the agents
were executed with probability 0.95 and the opposite action
was executed with probability 0.05.

Prisoner’s Dilemma. Figures 3(a)-(c) show results from
the iterated prisoner’s dilemma (see Figure 2a). In this game,
the target solution is for each agent to playa. Although ac-
tion a is dominated by actionb (for both agents), SPaM is

a b
a 3, 3 0, 5
b 5, 0 1, 1

a b
a 4, 4 2, 5
b 5, 2 0, 0

a b
a 0, 3 3, 2
b 1, 0 2, 1

(a) (b) (c)

Figure 2: Payoff matrices for (a) prisoner’s dilemma,
(b) chicken, and (c) tricky game (Bowling 2004). Payoffs
to the row player are given first, followed by the payoffs to
the column player.

able to teach its associates to playa, resulting in an average
payoff per iteration of nearly 3. In this game, SPaM signifi-
cantly outperforms FP and WoLF-PHC when matched with
each of the three agents.

Chicken. Figures 3(d)-(f) show results from the game
chicken (see Figure 2b). In chicken, the target solution is
for each agent to playa, despite the fact that each agent has
an incentive to unilaterally deviate. Again, SPaM teaches
each of the three associates to do so, resulting in an average
payoff per iteration of nearly 4. Again, SPaM outperforms
FP and WoLF-PHC in this game when playing with each of
the three associates.

Tricky Game. Figures 3(g)-(l) show results when the
agents are matched with each other in tricky game (see Fig-
ure 2c). In tricky game, the target solution is for the row
player to playa and the column player to playb, which
results in payoffs of 3 and 2 to the row and column play-
ers respectively. While the prisoner’s dilemma and chicken
both generally require only a single round of punishment af-
ter a deviation, tricky game frequently requires two rounds
of punishment after a deviation. Since our implementations
of both FP and WoLF-PHC encode states as the previous
joint-action of the agents, none of the agents are able to “per-
ceive” some of SPaM’s punishments. However, SPaM still
performs better than both WoLF-PHC and FP when matched
with all three associates, both as a row player and a column
player. However, its payoffs are not as high as they other-
wise would be had each of the agents used longer histories
for state.

With Humans
We are working on obtaining official results pairing humans
with the three algorithms in various repeated matrix games.
Preliminary results suggests that SPaM performs very well
when playing many of these games humans. We leave these
results to future work.

Discussion and Future Work
We have described some of our work in progress on com-
bining teaching and following strategies using SPaM. While
as yet incomplete, results show that SPaM performs well in
many 2-player matrix games when matched with a wide va-
riety of agents, include itself, follower algorithms, and (in
preliminary results not shown here) humans.

Although promising, SPaM suffers from a number of
weaknesses. One of these weaknessses is that it does not
perform as well as desired when matched with static agents,
since static agents cannot be “taught.” One possible method

for overcoming this challenge is to increase the parameterη
when the associate does not respond to teaching. However,
we have not as yet found a way to do this effectively without
decreasing average payoffs when matched with agents that
learn slowly. Additionally, there remains much progress to
be made before these these techniques can be used in prac-
tical environments (i.e., multi-state environments, environ-
ments with incomplete information, and environments with
more than two agents).

References
Axelrod, R. 1984.The Evolution of Cooperation. Basic Books.

Bowling, M., and Veloso, M. 2002. Multiagent learning using a
variable learning rate.Artificial Intelligence136(2):215–250.

Bowling, M. 2004. Convergence and no-regret in multiagent
learning. InAdvances in Neural Information Processing Systems.

Camerer, C. F.; Ho, T.-H.; and Chong, J.-K. 2002. Sophisticated
ewa learning and strategic teaching in repeated games.Journal of
Economic Theory104:137–188.

Crandall, J. W., and Goodrich, M. A. 2004. Establishing rep-
utation using social commitment in repeated games. InAAMAS
Workshop on Learning and Evolution in Agent Based Systems.

Fudenberg, D., and Levine, D. K. 1998.The Theory of Learning
in Games. The MIT Press.

Jafari, A.; Greenwald, A.; Gondek, D.; and Ercal, G. 2001. On
no-regret learning, fictitious play, and nash equilibrium. InPro-
ceedings of the 18th International Conference on Machine Learn-
ing.

Kreps, D. M., and Wilson, R. 1982. Reputation and imperfect
information.Journal of Economic Theory27:253–279.

Littman, M. L., and Stone, P. 2001. Leading best-response strate-
gies in repeated games. InIJCAI Workshop on Economic Agents,
Models, and Mechanisms.

Littman, M. L., and Stone, P. 2005. A polynomial-time nash equi-
librium algorithm for repeated games.Decision Support Systems
39:55–66.

Littman, M. L. 1994. Markov games as a framework for multi-
agent reinforcement learning. InProceedings of the 11th Interna-
tional Conference on Machine Learning.

Littman, M. L. 2001. Friend-or-foe: Q-learning in general-sum
games. InProceedings of the 18th International Conference on
Machine Learning.

Milgrom, P., and Roberts, J. 1982. Predation, reputation and entry
deterrence.Journal of Economic Theory27:280–312.

Nash, J. F. 1950. The bargaining problem.Econometrica28:155–
162.

Powers, R., and Shoham, Y. 2004. New criteria and a new algo-
rithm for learning in multi-agent systems. InNIPS.

Powers, R., and Shoham, Y. 2005. Learning against opponents
with bounded memory. InIJCAI.

Sandholm, T. W., and Crites, R. H. 1995. Multiagent Reinforce-
ment Learning in the Iterated Prisoner’s Dilemma.Biosystems,
Special Issue on the Prisoner’s Dilemma.

Watkins, C. 1989.Learning from delayed rewards. Ph.D. Disser-
tation, University of Cambridge, England.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3: Payoffs given different pairings of artificial agents. The figures plot the mean (of 50 trials) average payoff per iteration
against time. One standard deviation is shown after 5000 iterations. (g)-(i) show the payoffs to the row player in tricky game
and (j)-(l) show payoffs to the column player. For SPaM,η = 0.1 andρ = 0.8.

