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Abstract— In many applications, the measure of a
robot’s intelligence is its usefulness to a user. This im-
plies that a measure of a robot’s intelligence is a mea-
sure of how well a human and a robot work together.
In human-robot teams, two components determine team
efficiency: neglect tolerance and interface efficiency. In this
paper, we a) present an evaluation technology which uses
secondary tasks to obtain measures of these two com-
ponents, b) develop the related metrics of instantaneous
robot performance and world complexity, and c) evalu-
ate three systems using these measures.

I. Introduction

Fully autonomous robots do not meet the needs of
most users. Rather, most users want robots that will
help them accomplish a job. These robots must be able
to interact effectively with humans as well as perform
tasks semi-autonomously. To date, many robotic sys-
tems exist at one of two extremes. At one extreme are
systems with purely teleoperated robots, where a hu-
man is always attending to a robot and the robot has
very little autonomy. At the other extreme are systems
with so-called fully autonomous robots that can be pro-
grammed and left to do a job, but frequently need to
be reprogrammed or re-engineered since systems fail or
need to be updated.

Between these two extremes are a set of systems
with robots that are autonomous enough to do a lot
of work, but require interactions with humans to ac-
complish meaningful tasks. We want to measure the ef-
fectiveness of these systems. There are two components
which determine the usefulness of these systems: how
much the robot can do autonomously and how much the
robot supports human interaction. We capture these
notions in two metrics: neglect tolerance and interface
efficiency.

In order to obtain these measures, we first develop
the related metrics of instantaneous performance and
world complexity. We use these related metrics in an
evalutation technology that can be used to estimate in-
terface efficiency and neglect tolerance. The evaluation
technology estimates measures of neglect tolerance and
interface efficiency by using secondary task experiments
in user studies.

In this paper, we will first discuss work related to
this topic. In section 3, we will describe neglect tol-
erance and interface efficiency in human-robot systems
and their related metrics. In section 4, we will describe

an evalutation technology for obtaining the measures
described in section 3. In section 5, we will describe and
evaluate three human-robot systems using this evalua-
tion technology, which includes a user study involving
40 test subjects. Finally, we will summarize the contri-
butions of this paper in section 6.

II. Related Work

Conway et al. in [4] presents a taxonomy of human-
machine interaction. The taxonomy includes teleoper-
ation, shared control, traded control and supervisory
control. Sheridan discusses both teleoperation and su-
pervisory control in detail in [16]. Various forms of
shared-control have been used [7], [15]. Traded con-
trol has become popular to avoid undo burden on the
operator [9]. Traded control, however, presents serious
challenges both from the human’s and the robot’s per-
spective [11].

Arkin’s group has done a lot of work in robot team-
ing. Such work includes the teleoperation of a group of
robots by a single input from an operator [1]. This same
idea was used in [10] for telemanipulation. Goldberg’s
work in [8] is related to this idea. However, instead
of having one operator control multiple robots, Gold-
berg has many operators control one robot. This is im-
portant because it provides a foundation for multiple
user/multiple robot interactions.

A powerful notion in human-robot interaction is ad-
justable autonomy, which captures the notion that the
autonomy level of a robot can be changed. This prin-
ciple has been used extensively in the literature (e.g.,
[6], [13]). An important principle related to adjustable
autonomy is that of mixed-initiatives [14], which poses
the question of who has control in a system at a given
moment and who is responsible for initiating control
transitions. Scerri and associates have developed meth-
ods which address the issues of adjustable autonomy
and mixed-initiatives in [12].

III. Assessing Human-Robot Interactions

In a situation in which a human interacts with a re-
mote robot over a communication network, there exist
two different loops involving three different agents: the
human, the robot, and the interface between the human
and the robot. The first loop involves the human and
the interface. Information about the robot and its en-



2vironment is delivered from the interface to the human.
The human processes this information and determines
a course of action which he/she believes should be done.
The human’s desired course of action is then communi-
cated to the interface through a control element. The
second loop involves the robot and the interface. The
interface communicates the human’s input to the robot.
The robot then combines this input with its artificial
intelligence to act in its world. The robot receives in-
formation about the world through its sensors which it
forwards to the interface

A lesson learned from process automation is that de-
signing a system without consideration for human fac-
tors frequently fails [2], even when humans are well-
trained and highly motivated. Therefore, attention
should be focused on making the interface and the robot
more intelligent in the sense that they support human
interaction. Within this context, we define an interac-
tion scheme as an autonomy mode of the robot and an
interface between the human and the robot. In order
to design a new interaction scheme, we can manipulate
either the interface or the robot’s artificial intelligence
(e.g. autonomy mode). To be able to compare various
interfaces and autonomy modes, we need a way of mea-
suring which ones are better. In the rest of this section
we discuss the elements that deterimine these measures.

A. Neglect Tolerance

Neglect tolerance is a measure of the effectiveness of
a robot’s autonomy mode. This term is used to refer
to the way in which a robot’s expected performance
changes when it is neglected by humans (i.e., when hu-
man attention is focused elsewhere). As a general trend,
as neglect increases, robot performance decreases. How
much robot performance decreases depends on the in-
teraction scheme that is being employed. Figure 1 con-
ceptualizes how one might expect neglect to affect per-
formance for different kinds of interaction schemes. In
the figure, the performance of an interaction scheme
using a teleoperated robot degrades quickly as the hu-
man neglects the robot. The performance of an au-
tonomous robot does not tend to degrade much over
time, although its peak performance usually would not
be expected to be as high as a teleoperated robot.

Fig. 1. Hypothesized neglect tolerance of interaction schemes
with various autonomy modes for a world of constant complexity.

As discussed in the introduction, teleoperation and
full autonomy lie on the extremes of human-robot inter-
actions. There exist a large number of autonomy modes
which require different degrees of interactions and are

represented in Figure 1 by a point-to-point scheme in
which a robot is given a command, such as “turn left
at the next intersection,” and is then expected to carry
that command out autonomously, after which more in-
teractions are required.

B. Interface Efficiency

Interface efficiency is a measure of the effectiveness
of an interface. When a human operator’s attention is
turned to a robot (we use the phrase servicing the robot
to describe this action), we would expect the robot’s
performance to change, hopefully for the better. The
way in which the robot’s performance changes during
servicing depends on the interaction scheme being em-
ployed. The interface of an interaction scheme affects
the time it takes for a human to gain relevant situa-
tion awareness, decide on a course of action, determine
the inputs to give to the robot, and then communicate
those inputs to the robot.

A poorly designed interface may cause the process of
gathering information by the human to become a task
in and of itself. Consider an extreme example in which
information about obstacles around a robot is commu-
nicated to the human operator via text. In such a sit-
uation, the human operator must read the information
and create a mental representation of the world around
the robot (which could take considerable time) before
generating a plan about how to deal with the obstacles.
Thus, an interface from which information is hard for
the operator to extract extends the time for the human
to switch from one task to another.

Figure 2 shows how interface efficiency could hypo-
thetically affect the performance of a robot for different
interaction schemes. The figure expresses the idea that
changes in an interaction scheme affect the way in which
the performance of a robot changes during interactions.

Fig. 2. Qualitative representations of interface efficiency for var-
ious presentations of information.

C. World Complexity

Up to this point, we have ignored the effects of world
complexity on neglect tolerance and interface efficiency.
Consider, however, the two worlds shown in Figure 3. It
seems obvious that it would be easier for a robot to nav-
igate through world b than to navigate through world
a. Thus, the complexity of the robot’s environment af-
fects robot performance. Interaction schemes that are
designed for a particular level of world complexity may
not perform well for other world complexities. Intu-
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Fig. 3. Two worlds with differing world complexities.

itively, robot performance generally decreases as world
complexity increases.

Some interaction schemes scale better to the effects
of complexity than do others. An interaction scheme
that scales well to complexity (i.e., robot performance
changes little with changing world complexity) is said to
be complexity tolerant. Any metric which claims to es-
timate robot performance must take into account world
complexity.

D. Combining Neglect Tolerance and Interface Effi-
ciency

The performance of a semi-autonomous robot de-
clines as human attention is spent on other tasks and/or
the complexity of the world increases. Additionally, ef-
fective human-robot interactions should allow perfor-
mance levels to remain high. This implies that inter-
actions must be frequent enough and last long enough
to maintain sufficiently high robot performance levels.
The combination of neglect tolerance and interface ef-
ficiency determine the frequency and duration of these
interactions.

To illustrate this, consider Figure 4. In the figure,
(moving from left to right along the horizontal axis), a
robot begins at performance level zero (or from stand-
still). A human operator begins to interact with the
robot (Task 1). When this occurs, performance is
modeled as an interface efficiency curve (see Figure 2).
When a human terminates the interaction and turns
his/her attention to another task (Task 2), the robot’s
performance level begins to deteriorate and is modeled
as a neglect tolerance curve (see Figure 1). Before
the robot’s performance level drops below acceptable
levels, the human must again turn his/her attention
to the robot (Task 1). Because of time for context
switches, these interactions must begin some time be-
fore a robot’s expected performance declines below an
acceptable level. In this way, the average frequency and
duration of human-robot interactions for an interaction
scheme can be determined.

E. Mathematical Measures of Usefulness

Let π donote an interaction scheme; thus, π repre-
sents a particular interface and autonomy level pair.
The performance of a robot employing interaction
scheme π is defined by a random process indexed by
time t, world complexity c, and the interaction rate r

Fig. 4. The average frequency and duration of human-robot
interactions can be determined by a combination of interface ef-
ficiency and neglect tolerance.

between human and robot 1. A random process is a
sequence of random variables indexed by time, and in
this case, world complexity and interaction rate. More
formally, the performance p of a robot for a given task
is defined as

p = V (π; t, c, r) (1)

where c = C(s) in which C is a complexity metric (which
we will explain later in this section) and s is a set of
states.

Equation (1) uses the generic time term t. However,
time is accessed differently by the neglect tolerance met-
ric than it is by the interface efficiency metric. Time
is accessed by the neglect tolerance metric as time-off-
task toff , which denotes the time elapsed since the robot
was last serviced. The interface efficiency metric ac-
cesses time by time-on-task ton, which denotes the time
elapsed since servicing began. Thus, if the robot is cur-
rently being serviced, then t is ton. If the robot is being
neglected, then t is toff . Therefore, equation (1) be-
comes

p = V (π; t, c, r) =
{

VS(π; ton, c, r) if being serviced
VN (π; toff , c, r) otherwise (2)

where the variables are defined as before. Thus, VS(π)
is a measure of the interface efficiency of π and VN (π)
is a measure of the neglect tolerance of π.

From VS(π) and VN (π), the average frequency and
duration of human-robot interactions for an interaction
scheme can be determined by the technique illustrated
in Figure 4. These average interactions are useful to
for two purposes. First, they us to compare various
interaction schemes. An interaction scheme which re-
quires both low duration and low frequency of interac-
tions is preferred to a interaction shceme which requires
both high duration and high frequence of interactions.
Second, they allow us to schedule the attention of an
operator between multiple robots or multiple tasks.

1In this work we simply allow each interaction to last as long
as the human operator believes is necessary. Because of this as-
sumption, we can classify an interaction rate with one variable
r, which is the length of time in which a robot does not interact
with a human.



4F. Related Metrics

We mentioned in the introduction that measures of
neglect tolerance and interface efficiency depend on two
metrics. The first of these is an instantaneous perfor-
mance metric. The second is a complexity metric.

F.1 Instantaneous Performance Metrics

In this paper, the term performance metric2 is used
to denote the work performed by a robot with respect to
that robot’s, or, perhaps, some other object’s, capacity
to perform work. Robot performance is simply the ratio

work
capacity . Note that performance can be either positive
or negative, and can take on any value in the range [-1,
1].

Continuous robot performance can sometimes be dif-
ficult to measure. In many instances, it is very easy to
measure the performance of a robot after it has com-
pleted a task, but it is difficult to measure performance
while the task is in progress. In this paper, however, we
assume that performance can be measured or estimated
continuously, and leave situations in which performance
can not be measured or estimated continuously to fu-
ture work.

The way in which performance is measured can be
different for each task. The neglect tolerance and in-
terface efficiency metrics require only that at any given
time, an estimate of the instantaneous performance3 of
the robot be available. This implies that we must be
able to estimate instantaneous work and instantaneous
capacity for work as well. Assuming we have these es-
timates, we have

ipt =
iwt

ict
(3)

where ipt is the instananeous performance at time t,
iwt is the instantaneous work performed at time t and
ict is the instantaneous capacity for work at time t.

As an example, consider the task of navigating a
robot through a maze world towards a goal position. In
this task, a robot’s capacity is simply the speed at which
it approaches its goal if it takes the optimal path at top
speed. Thus, a robot’s instantaneous performance is
simply the rate at which it is actually approaching its
goal divided by this capacity. This must be a value
between -1 and 1, so it satisfies the conditions of an
instantaneous performance metric.

F.2 Complexity Metrics

Like performance, complexity is also difficult to mea-
sure. Complexity is, in fact, somewhat subjective. A

2The actual performance metric should not be confused with
the performance prediction which the interface efficiency and ne-
glect tolerance metrics perform. The Interface efficiency and ne-
glect tolerance metrics use an instantaneous performance metric
to classify robot actions so that future robot performance can be
predicted.

3We use the term instantaneous performance to indicate the
performance of a robot over a small time interval.

world can be considered relatively simple or very com-
plex, depending on the task being performed. Addition-
ally, to one set of abilities a world may be considered
very complex, whereas to another set of abilities the
same world may be considered quite simple.

This being said, complexity metrics are an important
part of the neglect tolerance and interface efficiency
metrics. We do not specify how complexity must be
measured for all tasks, as such a specification would
be impractical. We only say that an estimate of world
complexity is required. How this is done is left to the
system designer. Good complexity metrics, however,
tend to assign high complexity estimates to environ-
ments which make a task difficult for a robot to per-
form, and low complexity estimates to environments
which make a task easy to perform.

We consider, again, the task of navigating a robot
through a maze world towards a goal position. The two
dominant factors that make navigation difficult are the
branching factor (number of intersections per area) of
the robot’s world and the amount of clutter (amount of
obstacles per area) in the robot’s world. The branch-
ing factor of the world can be estimated by calculat-
ing from robot sonar signatures the number of different
paths the robot can take over a certain distance trav-
eled. The clutter of the environment can be estimated
by combining (a) directional entropy 4, (b) change in
velocity over time, and (c) change in sonar values over
time. Branching factor estimates and clutter estimates
can then be combined as a weighted sum to obtain a
world complexity estimate between 0 and 1.

This complexity metric, although certainly not per-
fect, does a fairly good job of estimating world complex-
ity for the experiments reported herein. As an exam-
ple, Figure 3 shows two worlds used in the experiments
described in this paper. Using results from a teleoper-
ation interaction scheme, the world in Figure 3(a) had
an average complexity of 0.373 and Figure 3(b) had
an average complexity of 0.216. These numbers indi-
cate that indeed this complexity metric returns a sig-
nificantly higher value for a world that would be sub-
jectively described as more complex.

Because of the ways in which a robot moves, this
complexity estimate will tend to be slightly different
for each interaction scheme. However, complexity esti-
mates made by this complexity metric have shown to
be similar for all the interaction schemes we have used
for the navigation task.

IV. Evaluation Technology

In the previous section, we discussed the random pro-
cess V (π)5, which is a measure of the neglect tolerance
and interface efficiency of the interaction scheme π. In
this section, we discuss how this random process can

4Directional entropy is loosely defined as how often the robot
changes direction over time. High entropy correlates well with
complex environments and is computed using the techniques de-
scribed in [3]

5We use the shorthand notation V (π) to denote V (π, t, c, r).



5be estimated nonparametrically by designing and per-
forming user experiments which suffiently sample the
domain space of the random process V (π).

The domain of the performance random process in-
cludes time t, interaction rates r, and complexity c. As
we discussed in the previous section, time t is sepa-
rated into time-on-task ton and time-off-task toff . To
sufficiently sample the time domain, we need users to
spend time both servicing and neglecting a robot. To do
this, we require that the user perform secondary tasks
in addition to performing the primary task of servicing
the robot. To sample the interaction rate domain thor-
oughly, we must vary how long the robot is neglected.
This is achieved by varying the length of time that a
user must perform a secondary task before returning to
service the robot. The complexity domain can easily be
sampled by simply performing the user experiments in
worlds of various complexities.

Since the domain of the random process is continu-
ous, it must be discretized so that it can be sampled
sufficiently. Each data sample from the user study is
placed in a bin defined by the discretized domain to
form a nonparametric estimate of the random process
V (π).

Even after discretizing the domain of the random pro-
cess, an impractical number of test subjects must be
used in order to sufficiently sample the domain in this
manner. This is because each complexity estimate is a
sample from an unknown random variable. We over-
come this problem by applying a gaussian filter to the
data. Such an approach is justified by the central limit
theorem. A large number of test subjects must still be
used, but not nearly as many.

To summarize, the evaluation technology requires
that humans and robots must actually interact in real
systems to measure the neglect tolerance and interface
efficiency of these systems. Secondary tasks must also
be used to thoroughly sample the domain space of the
random process.

V. Evaluating Three Human-Robot Systems

We applied the evaluation technology described in
the previous section to analyze the effectiveness of three
different interaction schemes in performing the task of
navigation through a maze world. In this section, we
will describe the three interaction schemes and the user
experiment used to estimate the neglect tolerance and
interface efficiency of these systems. We will then show
the results obtained from the user study..

A. Three Interaction Schemes

A snap shot of the GUI used by each interaction
scheme is shown in Figure 5. A god’s eye view of the
world (in the form of a topographical map) is shown
in the center portion of the GUI. The sensory informa-
tion of the robot is depicted graphically as well. Each
of the autonomy modes uses a shared-control algorithm
described in [5]. The robot takes a vector as input and
combines this input with its sonar information to de-

Fig. 5. The graphical user interface used in the user study.

termine, by using an algorithm which is a variant of
potential fields, which direction to travel. The way in
which the input vector is derived is what makes the au-
tonomy mode for each interaction scheme different. A
brief description of each of the three interaction schemes
follows.

Teleop With this interaction scheme, the operator
uses a joytick to control the robot. The robot uses this
input as the input vector to the shared-control algo-
rithm.

P2P With this interaction scheme, the operator tells
the robot what to do at the next intersection (e.g., “turn
right at the next intersection”). The operator uses a
mouse to click buttons on the GUI to indicate what
the robot should do next. The robot uses its sonars to
determine if it is currently in an intersection or not. If it
is not in an intersection, the input vector to the shared-
control algorithm is simply a vector which points the
robot straight ahead. If the robot believes that it is in
an intersection and it has been told to turn right (or
left), the input vector is simply a vector pointing 45◦

to the right (or left).
Scripted With this interaction scheme, the operator

uses a mouse to drop a sequence of goal markers on the
topographical map to lead the robot to its goal. The
input vector is obtained by using the next goal marker
in the sequence of goal markers it must travers. The
vector Vg between the goal marker and the robot is
calculated. This vector is compared to the vector Vd,
which points in the direction the robot is facing. If the
angle between these vectors is greater than 45◦, then
the robot simply spins in place (in the direction which
decreases the angle between the two vectors). If the
angle is less than or equal to 45◦, then the robot simply
inputs Vg into the shared-control algorithm. If there is
no goal marker placed, the robot stays in place.

B. A User Experiment

The user study was performed with simulated robots.
The simulated robots were designed with a sixteen-
sonar ring around the robot, a black and white camera
image, and a compass. While the estimates of neglect
tolerance and interface efficiency with simulated robots
for the three interaction schemes do not apply directly
to robots in the real world, they are sufficient to illus-



6trate how the measurement technology is used. The use
of simulated worlds also makes it easy to perform tests
in a large variety of worlds.

The task to be performed in the experiment was the
navigation task discussed earlier. The robot and its goal
position were randomly assigned locations in a simu-
lated world. The user was instructed to guide the robot,
using the assigned interaction scheme, to the goal posi-
tion. When the robot reached the goal position, another
goal was randomly placed in the world for the robot to
go to.

There were two secondary tasks performed by the
operators in the user study. The first was to service
a second robot. This made it possible to gather twice
as much data per test session. The second secondary
task was to perform two-digit addition and subtraction
problems. This secondary task was performed when
both robots in the system were being neglected.

The basic protocol followed in the experiments was
to first train the test subject on the interaction scheme
to be used in the next test session. When the operator
felt comfortable with the interaction scheme, the train-
ing session was terminated and a test session began in
one of twenty different worlds. In the test session, the
operator first serviced one of the robots. When the op-
erator was done servicing that robot he/she pushed a
button on the GUI, after which the operator was as-
signed one of the secondary tasks. If it was time to
service the other robot, interactions with that robot
began. Otherwise, the operator was asked to do arith-
metic problems until it was time to service the other
robot. This process continued for ten minutes. The op-
erator was asked to reach as many goals as possible as
well as answer correctly as many arithmetic problems
as possible during each ten-minute test session.

A slight variation was made to the above protocol
when the assigned interaction scheme was Teleop. Since
the performance of a robot employing Teleop quickly
goes to zero when the robot is neglected, there was not
very much incentive for the operator to ever neglect
the robot. Thus, interactions between the operator and
the robot being serviced were automatically terminated
after ten seconds, after which the operator was assigned
another task.

Each test subject took part in three ten-minute
test sessions, using a total of two different interaction
schemes. A total of forty test subjects were used in all,
so 120 test sessions were performed. Of these sessions,
15 were dedicated to the Teleop interaction scheme, 48
to the P2P interaction scheme, and 57 to the Scripted
interaction scheme.

As we mentioned previously, the domain space of the
random process, consisting of the variables r, t, and
c, must be properly discretized. In order for r to be
sampled sufficiently for each interaction scheme, some
neglect times, which are determined by a computer,
must be extended until the expected performance of
the robot approaches zero. This is a different length
of time for each interaction scheme so r must be dis-

cretized differently for each interaction scheme. For
Teleop, interaction rates took on only one value since
robot performance immediately dropped to zero upon
being neglected. For P2P , the interaction rate domain
was divided into bins of 5, 10, 15, 20, 25 and 30 seconds.
For Scripted, the interaction rate domain was divided
into bins of 10, 20, 30, 40, 50, and 60 seconds. The time
(t) dimension of the domain space was discretized into
half second increments and the complexity (c) dimen-
sion of the domain space was discretized into chunks of
0.05 units.

The instantaneous performance and complexity met-
rics described in section 3 were used to estimate the in-
stantaneous performance of the robot and the complex-
ity of its world. These estimates along with time, op-
erator actions (such as mouse clicks and joystick move-
ments), and robot state information were logged for use
in computing the random processes for each interaction
scheme.

C. Results

Figure 6 shows the mean of the random processes
V (Teleop), V (P2P ; r = 30sec.), and V (Scripted; r =
60sec.). The trends of the graphs reflect the trends we
hypothesized earlier in this paper. As complexity in-
creases, performance decreases. Additionally, as a robot
is neglected, performance decreases. This is true for
each interaction scheme, although at varying degrees.
The mean of the random processes also illustrates the
neglect tolerance and interface efficiency of each of the
interaction schemes.

Figure 7 shows the expected performance of a robot
using each of the three interaction schemes in an en-
vironment with complexity 0.35. Figure 7(left) shows
the interface efficiency of the interaction schemes. As
can be seen, the Teleop interface is the most efficient
at bringing the robot from low performance levels to
high performance levels, as it takes only a few seconds
for it to do so. The other two interaction schemes take
about ten seconds longer to reach peak expected perfor-
mance levels than does Teleop. Figure 7(right) shows
the neglect tolerance of the three interaction schemes.
It is obvious from this graph, as well as from Figure 6,
that Scripted has a much higher tolerance to neglect
than does Teleop and P2P , as expected performance
levels decay much slower as the robot is neglected for
increasing amounts of time.

Given V (Teleop), V (P2P ), and V (Scripted), we can
estimate average interactions required by the interac-
tion schemes by setting a minimum performance level
as shown in Figure 4. These results are shown in Fig-
ure 8 for most world complexity levels. The minimum
acceptable performance level used to obtain these inter-
actions was 50% of peak expected performance levels.
As can be seen from the figure, the Scripted interac-
tion scheme requires less frequent interactions than do
the other interaction schemes. Additionally, for most
levels of complexity, the average interaction time re-
quired by Scripted is less than that required by P2P .
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Fig. 6. Plots of the mean of the random processes V (Teleop), V (P2P ; r = 30sec.), and V (Scripted; r = 60sec.).

Fig. 7. Shows the measures of interface efficiency (left) and neglect tolerance (right) with world complexity 0.35 for Teleop, P2P and
Scripted.

Fig. 8. Shows the average interactions which should take place (based off a minimum acceptable performance level of 50% of peak values)
for the three interaction schemes.

Thus, human-robot interactions with Scripted require
less operator workload than do the other two interac-
tion schemes.

The frequency and duration of interactions, encoded
as time-to-task and time-off-task in Figure 8, define the
operator workload of an interaction scheme. Figure 9
shows this operator workload (shown as time−on−task

totaltime )
plotted against the average expected performance of
the interaction scheme when such interactions are fol-
lowed. Plots are shown for three different levels of world
complexity. In general, as complexity increases, points

tend towards the bottom-right corner of the plots (from
the top-left corner). An interaction scheme’s complex-
ity tolerance is shown by how slowly it approaches the
bottom-right corner as complexity increases. Note that
P2P approaches the bottom-right corner faster than
the other two interaction schemes. Thus, Scripted and
Teleop are more complexity tolerant than is P2P .

Figure 9 also illustrates the tradeoff that occurs be-
tween operator workload and robot performance. Con-
sider the results when world complexity is equal to 0.20
(at left). In this figure, P2P has a higher expected per-
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Fig. 9. Compares the interaction schemes in terms of % operator workload and robot performance for different levels of complexity c.

formance than does Scripted. However, this comes at
the cost of increased operator workload. This tradeoff
means that unless one interaction scheme completely
dominates the other, the best interaction scheme to be
used is dependent on the circumstances of the system.

To summarize, the Scripted interaction scheme has a
higher tolerance to neglect than do the other interaction
schemes. Since Scripted requires no more interaction
times than does P2P , it is usually a more effective inter-
action scheme (in the simulator used in the use study)
than is P2P . While Teleop has the most efficient in-
terface efficiency of the three interaction schemes, it
requires constant attention from the operator, and thus
is not desireable for many situations. Additionally, for
most complexity levels, the average performance of a
Scripted robot is about the same as that of a Teleop
robot.

VI. Summary

Since most users want robots that will help them ac-
complish tasks, human-robot interactions are required.
We want robots that interact effectively with humans
and are capable of performing complex tasks with vary-
ing degrees of autonomy. In this paper, we discussed
two components which determine the usefulness of a
system: how much the robot can do autonomously
and how much the robot supports human-robot interac-
tions. We captured these components in the notions of
neglect tolerance and interface efficiency, and developed
metrics for them.

To estimate measures of neglect tolerance and inter-
face efficiency, we described an evaluation technology.
The evaluation technology requires the use of secondary
task in user studies. We performed a user study using
this evaluation technology to measure the interface effi-
ciency and neglect tolerance of three human-robot sys-
tems. These measures allowed us to compare the three
systems.

Although the metrics described in the paper are pow-
erful for the analysis of interaction schemes, the user
studies can be very time consuming and sometimes im-
practical. Thus, finding more efficient methods for mea-
suring the neglect tolerance and interface efficiency of
human-robot systems is needed.
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