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Abstract—This paper explores transfer learning for contextual
bandit problems using a method for automatically generat-
ing checker values used in Assumption-Alignment Tracking
(AAT) [1]. In the contextual bandit problem, agents have access to
various behavior generators which rely on certain assumptions.
AAT tracks these assumptions to help an agent to evaluate how
current conditions will impact its performance. While AAT has
been shown to be effective in contextual bandit problems, the
identification of assumptions and the effort required to create
programs that check their veracity can be tedious and time-
consuming. In this paper, we employ an attention-based neural
network, which we call the AATention network, that uses domain
transfer learning to generalize checkers created in one domain
for use in other (previously unseen) domains. We evaluate this
method in several multiagent environments. While imperfect,
as any approach is, empirical results show that the AATention
network can effectively facilitate transfer learning to previously
unseen environments in multiple scenarios.

Index Terms—AAT, AATention, Transfer Learning

I. INTRODUCTION

At each time step of a task, bandit algorithms select an ac-
tion from among N possible choices, often called “arms”, with
the goal of maximizing expected rewards (over time) when
the consequences of each choice are stochastic and unknown
beforehand [2]. While many traditional bandit algorithms offer
performance guarantees, like any class of algorithm, previ-
ous work has identified key limitations of such approaches
[2]. In addition to having shortcomings related to tuning on
asymptotic performance measures (e.g., no regret [3], [4],
[5]) and difficulties adapting to non-stationary domains (e.g.,
the CFR algorithm [6] in a repeated two-player prisoner’s
dilemma game, where the opponent might change strategies
over time), one of the most glaring is the fact that traditional
bandits ignore external information about the environment that
might be beneficial in the decision-making process. Contextual
bandits are designed to address these challenges.

Of particular interest to this work are contextual bandits
with expert advice. Rather than model each arm as an action,
the arms of these bandits are experts, or generators, designed
to receive contextual information as input and generate actions
as output. The bandit aims to follow the advice of the best
generator given the current context at any particular time
step. These bandits are arguably more generalizable than other
contextual bandits, as the generators can represent complex

rules, trained machine learning predictors, etc., which makes
working with larger state and action spaces more feasible.

However, bandits with expert-advice are also imperfect.
While the generators themselves use contextual information,
the bandit typically does not use contextual information when
choosing which generator to follow. This is arguably a signif-
icant weakness, as each generator likely only performs well
in a subset of all possible contexts.

To boost the performance of contextual expert-advice ban-
dits (hereafter referred to as “contextual bandits” for brevity)
in complex, non-stationary environments, recent research has
used Assumption-Alignment Tracking (AAT) [1]. AAT is a
proficiency self-assessment algorithm in which the system
designer identifies key assumptions an algorithm relies on and
creates simple assumption checker programs that regularly
estimate the veracity of those assumptions. The agent then
uses these assumption estimates to predict the performance of
an algorithm or generator. Recent work has found that AAT
allows contextual bandit algorithms to frequently and effec-
tively update their beliefs about actions as their environment
changes. More specifically, AAT allows a contextual bandit
to (1) use contextual information when selecting the best
generator (and the generators also use contextual information)
and (2) consider possible future rewards in its predictions.
AAT is relatively new, but has shown positive results (e.g.,
[1], [7], [8]).

While promising, AAT suffers from the fact that it is essen-
tially a principled (but manual) feature engineering framework
(described more in the next section). This means that designers
who wish to apply AAT in their problem(s) must invest
significant upfront cost in terms of time and effort to properly
set up AAT for the desired domain. To help address this
problem, the focus of this paper is to explore the possibility
of using a deep neural network to leverage AAT efforts done
in one domain to other (previously unseen) domains.

In particular, we employ domain transfer learning using
a deep learning mechanism. Transfer learning is a machine
learning technique where a model developed for a specific
task is reused as a starting point for another model in a second
task [9]. Domain transfer learning can be viewed as a subset
of transfer learning, where a model trained in one domain
is adapted for use in a different but related domain. In recent



Fig. 1: Traditional AAT process compared to the new AATen-
tion process. Alignment vectors are produced from checkers
(top) or AATention (bottom). The vectors are passed to con-
textual bandit algorithms, which use them to predict generator
performance, which in turn guides generator selection.

years, domain transfer learning has found popularity in natural
language processing and computer vision (e.g., [10]).

The work in this paper involves training an attention-
based (multi-head) neural network, called AATention, in at
least one domain with hand-crafted AAT alignment vectors.
The AATention network is then used to generate alignment
vectors to be used by contextual bandits in new domains. This
proposed process, compared to the traditional AAT process, is
shown in Figure 1. Note that the key difference between the
two is the source of alignment vectors, wherein traditional
AAT uses manually created alignment checkers, whereas the
proposed AATention process uses output from the AATention
Network. Our objective is to begin to understand when and
how algorithms that use AATention outputs can compete with
algorithms that use hand-crafted AAT vectors, as this would
allow designers to more easily apply AAT to new domains.

We begin by reviewing AAT.

II. BACKGROUND: ASSUMPTION-ALIGNMENT TRACKING

Assumption-Alignment Tracking (AAT) [1] is a proficiency
self-assessment algorithm originating in the robotics literature.
AAT is used to predict the performance of a generator, which
is an algorithm designed to perform a particular task. At each
time step t, a generator G takes as input an encoding of the
state of the world, denoted sGt , and outputs some action at to
be executed in that time step.

AAT leverages the idea that a generator is created under
certain assumptions about the environment and the agent. As
such, the performance of the generator depends to a large
degree on these assumptions being met. Thus, to predict the
future effectiveness of a generator, the agent must be aware of
the extent to which these assumptions are, and will continue
to be, true. This can be accomplished by continually tracking
the veracity of the assumptions upon which the generator
relies, and then using these assessments to adjust performance
predictions (using some machine learning model).

To track the veracity of the assumptions made in the
construction of generator G, veracity assessments are calcu-
lated using alignment checkers. An alignment checker is a
program that continually tracks the veracity of an assumption.
Each assessment can be stored in a vector xG

t , the veracity
assessment vector of generator G at time t. This makes AAT

a principled feature engineering process, as assumption esti-
mates are features that are estimated via checkers and passed
to a learning model used to predict generator performance.

Despite being relatively new, AAT has been successful in
multiple applications, including robotic navigation, anomaly
detection, and selecting behaviors in repeated games [1], [7],
[8]. However, a key weakness of AAT is the fact that a designer
must manually identify assumptions and create alignment
checkers for the domain they are working with. This can
be a demanding, time-consuming, and somewhat subjective
process, which is a common problem not only with AAT but
with manual feature engineering in general [11]. Automating
the checking of assumptions could improve AAT’s useability.

Deep learning offers one potential solution to this challenge.
At the core of deep learning lies the artificial neural network,
a multi-layered structure inspired by the human brain [12].
One of the key strengths of deep learning is its ability to
learn complex, nonlinear relationships between inputs and
outputs [13]. Of particular interest for this work is the fact
that deep learning models have been used for automatic feature
selection. For example, convolutional neural networks (CNNs)
extract image features from raw pixels and autoencoders aim
to learn a compressed version of a dataset.

III. THE AATENTION NETWORK

Creating a generalizable neural network that can be used
to automate AAT feature engineering across a variety of
domains/problems via domain transfer learning requires that
we solve two fundamental challenges.

The first challenge is that there are variations around how
one might choose to represent environment state vectors. For
example, two domains might be nearly identical, but designers
could order the elements in their state representation vector
sGt differently. Furthermore, the dimensions (i.e., the number
of features) of sGt might vary depending on the designer and
environment. The AATention network use two mechanisms
to address this challenge. First, attention has been shown to
help neural networks focus on the content of each element
in their input vector(s) rather than the specific positions [14],
[15]. Networks with attention can learn which elements are
most relevant for predictions, regardless of order. Thus, we
incorporate attention into our network. To help the network’s
attention mechanism learn effectively, we augment data by
randomly changing the order of vector elements in the training
data. This produced additional data samples for the network
to learn from. Second, to address the problem of different
vector dimensions, we allow for a maximum vector size of
300. Vectors with fewer than 300 dimensions are zero-masked
(as is common practice employed in transformer text inputs).
We feel that 300 is an ample size, allowing for more complex
environments to be used in future projects, as existing work
on AAT has traditionally only required small sizes (e.g., [1],
[7], [8], [16]).

The second challenge to making the attention network
generalizable is that the output dimension of the model (i.e.,
the number of assumption estimates to produce) can vary



Fig. 2: The AATention network.

depending on the number of assumption checkers created by
the designer. To combat this problem, we train the model
to always output a fixed-size vector (maximum number of
assumptions). We then use a post-processing step with a mask
that sets irrelevant outputs (those beyond the actual number
of assumptions for the specific task) to zero. We used an
output dimension of 100. We again feel that this is more than
sufficient, as previous work on AAT typically creates only a
handful of checkers for each generator.

With these considerations in mind, we now present the
AATention network, which is summarized in Figure 2. Im-
plementation details (number of attention heads, dimension
sizes, etc.) can be found in SM-1 and the supplied code. The
AATention network contains 1,184,877 trainable parameters
(approximately 4.52 MB of memory); compared to most
modern deep neural networks that use attention (e.g., large
language models), this is an extremely small size, allowing
designers to quickly and efficiently use AATention.

The AATention network receives as input a string of text
that represents the description of the generator G (for which
the network should create an alignment vector) and a string of
text that describes the domain/environment that the generator
is operating in. These two strings are meant to provide the
network with adequate context. The strings are passed to a
custom text layer that processes both strings separately. This
custom layer tokenizes and embeds the strings, adds positional
encodings to both, performs self-attention on both, and outputs
two self-attention matrices. The full architecture of this custom
layer can be found in SM-2.

A numeric vector sGt , representing generator G’s view of
the current state of the environment at time t, is also passed as
input. The vector is masked to account for varying dimension
sizes, passed through a dense layer, and finally passed through
a custom state attention layer. This custom layer applies
positional encodings and self-attention to the masked and
transformed state vector and outputs a self-attention vector.
The architecture of this custom layer can be found in SM-3.

Once both strings and the state vector have been processed,
they are passed to a custom cross attention layer. This layer
performs cross attention between (1) the generator description
self-attention matrix (one of the outputs from the custom text
layer) and the state self-attention vector and (2) the envi-

ronment description self-attention matrix (the second output
from the custom text layer) and the state self-attention vector.
The motivation behind these architectural decisions was to
allow the network to learn how generator and environment
descriptions relate to the current state. The vectors from the
two cross-attention executions are added with the original state
self-attention vector that was passed as input, and the resulting
vector is returned. Details about this layer can be found in
SM-4.

After the cross-attention layer, the remainder of the AA-
Tention network consists of a series of dense layers, skip
connections, dropout, and normalization. The final dense layer
uses a sigmoid activation function [17] to produce a 100-
dimensional vector. AAT estimates are traditionally encoded
with values between 0 and 1 to quantify how much an
assumption is believed to be satisfied or violated. A sigmoid
function is a convenient activation layer for this purpose, as
it forces its output to fall in this range. A sigmoid function
also has the advantage that the sum of the outputs does not
need to be 1 (i.e., a probability distribution), which is not a
requirement for AAT alignment vectors.

As a brief example of how AATention works and can
be useful, imagine a repeated two-player prisoner’s dilemma
game. The first player wants to cooperate but the second
player tends to defect consistently. The first player has a set
of generators at their disposal that play different strategies and
wants to use AAT to pick the best generator. Instead of needing
to create alignment checkers for each generator, the first player
can provide a description of a given generator, a description of
the game, and a representation of the current state of the game
(ideally capturing the fact that the second player often defects).
AATention should produce alignment vectors that encapsulate
the sentiment that generators that focus on cooperation likely
will not perform well in this scenario due to the nature of the
game and the behavior of the second player.

IV. TRAINING AND TESTING

This section describes how we train the AATention network,
the contextual bandit algorithms we evaluate in each domain,
how we measure performance, and the domains in which we
evaluate the algorithms.

A. Training the AATention Network

We trained the AATention network in two different domains:
the Junior High Game (JHG) [18] and a repeated two-player
chicken game (payoff matrix shown in Table I). We chose
to train the ATTention network using these two domains as
they represent different levels of complexity. The JHG is more
complex, and thus requires a substantial number of alignment
checkers when using AAT. On the other hand, the chicken
game offers a more simplistic domain, thus requiring fewer
checkers when using AAT. By seeing how the AATention net-
work performs when trained in complex and simple domains,
we can gain a better understanding of when and how well it
generalizes to new domains.



TABLE I: Payoff matrix for chicken.

Player 2
Swerve Straight

Player 1 Swerve (0, 0) (−1, 3)
Straight (3,−1) (−5,−5)

For both domains, we generated training data that contained
state vectors sGt , veracity assessment vectors xG

t , simple text
descriptions of each generator G, and simple text descriptions
of the domain. To help with different possible orderings of
individual sGt features, we performed data augmentation by
randomly changing the elements of the sGt vectors. 30% of
the training data was used for validation, where the best model
weights were saved only if validation performance improved.
We used the xG

t vectors as labels, the Adam optimizer with an
initial learning rate of 0.001, and calculated loss via the mean-
squared error function; masking was required for the loss
calculation, as the network outputs vectors with 100 elements
and xG

t vectors have different dimensions depending on the
generator G. To help evaluate the impact of the training data,
we performed experiments across three training sets: (1) data
from only the JHG, (2) data from only the repeated chicken
game, and (3) data from both the JHG and the repeated chicken
game. Results of training on each of these three sets are
described in Section V.

B. Contentual Bandit Algorithms

We created three contextual bandit algorithms that use
alignment vectors generated from the AATention network and
compared them to a fourth contextual bandit algorithm that
uses regular AAT vectors (i.e., those generated from alignment
checkers instead of the AATention network). The four algo-
rithms are listed in Table II. AlegAATr, introduced in [8], is
an expert-advice bandit that uses alignment vectors produced
from manually created checkers to predict the performance
for each of its generators. To make performance predictions,
AlegAATr uses K-Nearest Neighbors (KNN) [19] with k = 15.
AlegAAATr is identical to AlegAATr, but uses the AATention
network in lieu of the manually created alignment checkers
to form its context (the extra “A” stands for “AATention”).
SMAlegAAATr is similar to AlegAAATr, but uses the AA-
Tention network and a fully-connected neural network “head”
to directly predict generator performance (the “SM” stands
for “single model”, as it does not pass the alignment vectors
to a KNN model for performance predictions). A simple
diagram of this AATention and head combination is given in
Figure 3. The penultimate dense layer of this network has
an output dimension of 32 and the final dense layer has an
output dimension of 1 (for performance predictions). Finally,
AlegAAATTr is identical to AlegAAATr, except that it uses
the fine-tuned AATention network piece (not the head) from
SMAlegAAATr (the extra “T” stands for “tuned”).

Each of these algorithms must be trained to make generator
performance predictions from the alignment vectors they use in
the domain in which they operate. AlegAATr, AlegAAATr, and
AlegAAATTr train a KNN model for each of their generators,

TABLE II: Contextual-bandit algorithms compared in our
studies.

Algorithm Description
AlegAATr Uses alignment vectors produced by alignment checker

programs for context.
AlegAAATr Uses alignment vectors from the AATention network

for context.
SMAlegAAATr Uses the AATention network for context and a fully-

connected neural network “head” to directly predict
generator performance (Figure 3).

AlegAAATTr Uses alignment vectors from the fine-tuned AATention
network from SMAlegAAATr for context (but does not
use the fully-connected head).

Fig. 3: SMAlegAAATr architecture (AATention with a head).

while SMAlegAAATr simply trains its neural network (since
it uses a fully connected head). The specific AAT training
processes for these algorithms are similar to [8] and is imple-
mented in the code supplied in the supplementary material.
We also give a brief summary of the AAT training processes
for each test/evaluation domain in the next subsection.

C. Evaluation Domains

We evaluate the performances of the contextual bandit
algorithms in three domains: foreign exchange market day
trading; repeated, two-player games; and a mixed-motive Grid
Stag Hunt domain. Table III provides a brief description of
each category.

The foreign exchange (forex) market is the global financial
market in which individuals and organizations engage in cur-
rency trading. Widely regarded as the world’s largest market,
estimates suggest that the forex market has an average daily
trading volume of approximately $6.6 trillion [20]. We trained
and tested the algorithms on ten years of historical market
data, spanning from November 2013 to November 2023, on
the hourly (H1) EUR/USD currency pair. The generators and
training and testing processes used in our experiments are
identical to those found in [16].

Over the last several decades, playing repeated games has
been theoretically interesting to many researchers, as they
pose compelling learning challenges. Additionally, repeated
games can abstractly model relevant scenarios, including
wireless networks [21] and human-robot relationships [22].
Specifically, we trained and tested our algorithms in three
two-player repeated games: prisoner’s dilemma, chicken, and



TABLE III: Domains used in evaluations.

Domain Description AAT Training
Foreign Ex-
change Market
simulator
(forex)

A complex, realistic,
zero-sum (or, arguably,
negative-sum) domain in
which currency pairs are
traded.

Algorithms are trained
over ten years of
EUR/USD H1 data.

Repeated
Games

Simple yet theoretically
interesting domains that
can have real-world appli-
cations.

Algorithms play against
cooperators and defec-
tors in three repeated
games.

Grid Stag Hunt A mixed motive domain in
which three hunters must
either compete for a hare
or work together to cap-
ture a stag.

Algorithms are paired
with simple expert-
advice bandits and
agents that either only
hunt stag or only hunt
hare.

coordination. Game payoff matrices can be found in SM-5
(the payoff matrix for the chicken game is shown in Table I).
The duration of each game was set to 50 rounds. The specific
generators and training and testing processes were the same as
those found in [8] and can be found in our code. In short, the
algorithms in Table II were trained against their generators,
which included cooperators and defectors. The algorithms
were then tested against cooperators, defectors, agents that
change their strategies halfway through the game (round 25),
agents that randomly cooperate and/or defect, self-play (i.e.,
a copy of the algorithm being tested), and other expert-advice
bandits (BBL [23], EEE [24], and S++ [25]).

We also explored a two-dimensional, discretized grid envi-
ronment called the Grid Stag Hunt, which is a modification of
the ad hoc teamwork problem described in [26]. In essence,
three hunters can either compete to capture a hare or work
together to capture a stag. A stag is worth more than a hare,
but a hunter must determine if they trust the other two to also
pursue the stag instead of the hare. Specifics of the generators
and training and testing processes are found in the supplied
code. In short, the algorithms in Table II were trained against
hunters that only hunt the stag, hunters that only hunt the
hare, and simple expert-advice bandit hunters (they choose
their target based on their generator performance predictions).
The algorithms were tested against hunters that only hunt the
hare, hunters that only hunt the stag, hunters that only hunt the
hare but try to do so in a more efficient manner via planning,
hunters that only hunt the stag but do so with planning, and
self-play (i.e., all three hunters use independent instances of
the algorithm being tested).

D. Metrics

To evaluate the performance of each algorithm under each
test condition, we explored two metrics. The first is our pri-
mary metric and is simply average reward. We use this metric
to compare the contextual bandits that use the AATention
network (AlegAAATr, AlegAAATTr, and SMAlegAAATr) to
those that do not (AlegAATr). If algorithms that use the AA-
Tention network can achieve similar performance to AlegAATr
in domains in which the AATention network is not trained,

we would argue that the AATention network is successful in
learning generalizable alignment vectors.

The second metric is an adaptability score that is specific
to mixed-motive domains. Mixed-motive domains are those in
which agents are faced with both cooperative and competitive
incentives and must choose between them. The repeated games
and Grid Stag Hunt are examples of mixed motive domains;
accordingly, we calculated an adaptability score, defined in
detail in SM-6, for each algorithm in these domains (but did
not for forex, as it is considered a zero-sum domain). The
adaptability score is formed using two different measures of
regret: competitive regret and cooperative regret. Competitive
regret (denoted Rcomp) measures how well an algorithm
performs in scenarios when other agents are not inclined to
cooperate, while cooperative regret (denoted Rcoop) measures
how well an algorithm performs when paired with other
algorithms that are inclined to cooperate. Competitive and
cooperative scores (denoted Scomp and Scoop, respectively) are
then calculated by normalizing Rcomp and Rcoop, respectively,
to values between 0 and 1, where values closer to 1 indicate
better performance. Finally, the adaptability score is calculated
as SA = min(Scomp,Scoop). We argue for the minimum
(rather than, say, the average) in order to distinguish algorithms
that adapt effectively to those that do well only in specific
scenarios, as an agent that is adaptable should have high scores
in both categories.

V. RESULTS

We now evaluate the ability of the AATention network
to generalize to previously unseen domains given different
training mechanisms. Additional results and figures can be
found in SM-7.

A. Training the ATTention Network on the JHG

We initially ran our experiments by training the AATention
network using data from the JHG, as it is more complex
than the repeated chicken game. Average performances for
AlegAATr, AlegAAATr, AlegAAATTr, and SMAlegAAATr,
respectively, in the forex market, repeated prisoner’s dilemma,
repeated chicken game, repeated coordination game, and Grid
Stag Hunt, respectively, can be found in Figure 4. The results
show that AlegAATr has higher average payoffs than the other
algorithms in each domain (except forex). However, the dif-
ferences between AlegAATr, AlegAAATr, and AlegAAATTr
are only statistically significant in Chicken (p < 0.001 for all
comparisons based on Tukey-Kramer tests). SMAlegAAATr
consistently performs worse than the other algorithms (results
are statistically significant in nearly every case). When con-
sidering AlegAAATr vs. AlegAAATTr, we observe that their
performances are roughly equal in each domain.

In short, when trained in the JHG, these results indicate that
the performance of AlegAAATr and AlegAAATTr was on par
with that of AlegAATr in four of the five previously unseen
domains, with the only significant performance gap occurring
in the repeated chicken game.



(a) Forex

(b) Prisoner’s

(c) Chicken

(d) Coordination

(e) Grid Stag Hunt

Fig. 4: Average results for each algorithm across the evaluation
domains when AATention was trained only on JHG data. Black
bars indicate standard error of the mean.

B. Training on the Chicken Game

Given AATention’s seemingly poor performance in the
repeated chicken game, we tested to see how training in
that single domain would impact performance. The second
section of Table IV shows the average rewards and standard
errors for each algorithm in each domain when the AATention
network is trained in the chicken game. The table shows that
both AlegAAATr and AlegAAATTr improved substantially
compared to when they were trained in the JHG (first section),
though AlegAATr’s average rewards remained significantly
higher than both algorithms in the chicken game (p < 0.001).
Interestingly, SMAlegAAATr did not change much. Further-
more, results for the other domains remained roughly the same.

Overall, it appears that training on data from the chicken game
either boosted or maintained performance across the domains;
this is something we hoped to see specifically for the chicken
game, as an algorithm should perform well in a domain in
which it has been trained.

C. Training on the JHG and the Chicken Game

Considering the minor enhancements we saw when training
on data from the repeated chicken game data, we felt it would
be worthwhile to explore results when the AATention network
is trained on data from both the JHG and the chicken game.
The bottom section of Table IV shows that the performances
for each algorithm in each domain were roughly the same as
those when the AATention network is only trained on chicken
game data (the middle section of the same table).

However, we also calculated each algorithm’s defect, co-
operate, and adaptability scores in each test domain (except
the forex market) when the AATention network was trained
on data from both the JHG and repeated chicken game.
The algorithms’ average cooperate and adaptability scores,
respectively, in the repeated chicken game are shown in Figure
5 (figures for other domains can be found in SM-7). We chose
to focus on the chicken game because that is the domain in
which AATention-based algorithms struggled the most, and we
feel that the cooperate and adaptability scores, as well as the
game’s payoff matrix, can shed some light as to why.

The figure shows that the bandit algorithms that use the
AATention network achieved poor cooperative performance
in this game (especially SMAlegAAATr). This translates into
smaller adaptability scores. In other words, for this specific
domain, the AATention network struggled to provide context
that leads to cooperation in scenarios where it would have
been beneficial to do so. They were not as adaptable/flexible
as AlegAATr, which appears to contribute considerably to
the performance gap in this game. If we recall the payoff
matrix, found in Table I, we observe that the best form of
cooperation given this payoff matrix results from alternating
between swerving and going straight, for an average reward
of −1+3

2 = 1. This is a somewhat complicated strategy that is
perhaps more difficult to recognize, as it requires alternating
generator selection each round. While bandits that use the
AATention network seemed to struggle with this, AlegAATr
was able to use hand-crafted assumption checkers, tailored to
the chicken game, that allowed it cooperate very effectively
(achieving nearly a perfect score).

Do the AATention bandits struggle with adaptability in
the other domains? Table V shows each algorithm’s average
compete, cooperate, and adaptability scores for every domain
(except the forex market) when AATention was trained on
both JHG and chicken game data. From this table, we can
see that AlegAAATr and AlegAAATTr were as adaptable as
AlegAATr in the other games on average. This reinforces that
the AATention network has some ability to transfer learn to
previously unseen domains.



TABLE IV: Results by domain, algorithm, and training condition. (±) values indicate standard errors.

Training Algorithm Forex Prisoner’s Chicken Coordination Grid Stag Hunt

JHG AlegAATr -709.8 (± 386.9) 56.9 (± 2.7) -14.4 (± 1.5) 87.6 (± 0.5) 7.0 (± 0.7)
AlegAAATr -395.6 (± 402.9) 49.5 (± 2.8) -45.2 (± 1.9) 87.2 (± 0.5) 7.7 (± 0.6)
AlegAAATTr -564.2 (± 473.2) 52.9 (± 2.8) -43.5 (± 1.8) 87.4 (± 0.5) 6.4 (± 0.5)
SMAlegAAATr -1437.6 (± 416.4) 23.2 (± 2.7) -74.1 (± 2.0) 65.6 (± 0.3) 6.7 (± 0.6)

Chicken AlegAATr -709.8 (± 386.9) 56.9 (± 2.7) -14.4 (± 1.5) 87.6 (± 0.5) 7.0 (± 0.7)
AlegAAATr -303.2 (± 664.6) 43.3 (± 3.0) -26.9 (± 1.4) 87.3 (± 0.5) 8.2 (± 0.8)
AlegAAATTr -188.0 (± 637.1) 49.3 (± 2.8) -24.1 (± 1.4) 85.8 (± 0.5) 7.9 (± 0.8)
SMAlegAAATr -1253.8 (± 625.9) 18.9 (± 2.7) -72.8 (± 2.0) 64.9 (± 0.3) 6.6 (± 0.6)

Both AlegAATr -709.8 (± 386.9) 56.9 (± 2.7) -14.4 (± 1.5) 87.6 (± 0.5) 7.0 (± 0.7)
AlegAAATr 212.9 (± 463.8) 55.6 (± 2.9) -31.5 (± 1.5) 86.6 (± 0.5) 9.2 (± 0.8)
AlegAAATTr -592.7 (± 610.8) 66.6 (± 3.0) -23.9 (± 1.3) 86.3 (± 0.5) 8.7 (± 0.8)
SMALegAAATr -1434.6 (± 562.8) 21.2 (± 2.7) -74.3 (± 2.0) 64.9 (± 0.3) 6.6 (± 0.6)

TABLE V: Competitive (Scomp), cooperative (Scoop), and adaptability (SA) scores for each algorithm in each domain.

Prisoner’s Chicken Coordination Grid Stag Hunt

Scomp Scoop SA Scomp Scoop SA Scomp Scoop SA Scomp Scoop SA

AlegAATr 0.929 0.691 0.691 0.937 1.00 0.937 0.980 1.000 0.980 0.233 0.417 0.100
AlegAAATr 0.818 0.843 0.800 0.869 0.552 0.552 0.980 0.971 0.971 0.083 0.717 0.017
AlegAAATTr 0.881 1.00 0.881 0.930 0.698 0.698 0.967 0.978 0.966 0.100 0.683 0.067
SMAlegAAATr 0.578 0.634 0.561 0.401 0.017 0.017 0.712 0.636 0.635 0.300 0.250 0.117

(a) Average cooperate scores, with standard errors.

(b) Average adaptability scores, with standard errors.

Fig. 5: Average cooperative and adaptability scores, respec-
tively, with standard errors (black bars), for each algorithm in
the repeated chicken game.

VI. DISCUSSION

Based on the results from the previous section, we feel
it would be beneficial to highlight a few key observations.
One important point is that the domain in which AATention is
trained might have an impact on performance, as observed in
some of the gains obtained by training on either the chicken
game or both the chicken game and JHG. Regardless of train-
ing data, perhaps the most important outcome is for AATention
to learn how to effectively map states and text descriptions to a
unique vector space. For example, AlegAAATr had the highest
average performance in the forex market (though, with no
statistical significance). A comparison of its learned alignment
vectors to those of AlegAATr (Figure 6) gives insights into
why. While the groups/clusterings are different between the

(a) AlegAAATr vectors. (b) AlegAATr AAT vectors.

Fig. 6: Compressed AAT vectors (via t-SNE [27]) for Ale-
gAAATr and AlegAATr, respectively, when trading in the forex
market. Colors represent which generator was selected.

two, we can see that the AATention network seemed to learn
an at least somewhat unique mapping from inputs to AAT
vectors, which likely helps contribute to its performance in
the forex market (and other domains).

Another important observation is that, across all evaluations,
AlegAAATr and AlegAAATTr are essentially equal in terms
of performance. Based on this, we would argue that spending
the extra time and effort to fine-tune the AATention network
on the domain in which one wishes to apply it does not seem
worthwhile.

Additionally, AlegAATr was consistently the best performer
(though, aside from the chicken game, there is little statistical
significance). This is not terribly surprising, as AlegAATr
operates on hand-crafted checkers created for the domain
in question. These hand-crafted features allow AlegAATr
to effectively achieve more difficult behavior for a specific
domain, such as cooperation in the repeated chicken game. If
obtaining the absolute “best” performance in a single domain



is a designer’s primary concern, creating and using checkers
in place of AATention is probably more promising. One also
loses interpretability with AATention, as it is typically much
easier to understand the output of alignment checkers than
to understand the output of a deep neural network. If that
is another significant concern, the traditional approach would
again be more suitable.

Despite the arguments in favor of the traditional AAT
process, the overall performance of AlegAAATr is competitive
with that of AlegAATr in most of the domains. Deployment
is also much easier and faster, as one does not need to plan
and craft multiple alignment checkers for each domain. It also
appears that, in most cases, adaptability is not a concern,
unless certain strategies are complex and cannot be easily
detected without hand-crafted features (e.g., cooperation in the
repeated chicken game).

VII. CONCLUSION

In this paper, we explored the use of a deep neural network
to automate the creation of Assumption-Alignment Tracking
(AAT) alignment vectors via domain transfer learning. Instead
of burdening a designer with identifying assumptions and
creating alignment checkers in each unique domain, we train
the AATention network from alignment checkers created in
at least one domain, and then use the AATention network
to produce context in previously unseen domains. Empirical
evidence across three game categories indicates that, in the
many cases, the AATention network allows algorithms to
perform as well as they perform with hand-crafted (domain
specific) alignment vectors. However, the AATention network
seems to suffer when more complex strategies are needed;
these are cases where tailored, hand-crafted features might be
preferred. Future work is needed to tease out the effects of
training domains and network architecture.

VIII. SUPPLEMENTARY MATERIAL

The technical appendix and code used in the experi-
ments can be found at https://github.com/ethanp55/auto aat/
tree/ICMLA2025-SM.
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