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ABSTRACT
New designs and metaphors for human-robot interaction need to

be created to support interactions between humans and robots that

occur over many days, weeks, months, or years. This position paper

introduces a dynamic trajectory metaphor for long-term interaction

as a path through memory, mental states, and dispositions. Using

this metaphor, the paper outlines how the deliberate construction of

narrative can be used to shape the trajectory, avoiding undesirable

equilibria such as the overuse, disuse, or misuse of robots caused by

miscalibrated trust. The metaphor is illustrated to long-term service

robots, in which humans have a longitudinal and local relationship

with “their” service robot as well as a longitudinal and distant

relationship with a robot service provider. Creating deliberative

and adaptive narratives in such context will likely require learning

from vast distributed data models, and will require both general

learning components that reside at some service bases (which will

rely on data collected frommultiple robots), and specialized learning

components localized within a particular set of locations and group

of humans. We review some past work that illustrates some basic

components for the artificial intelligence required to create such

narratives, using so-called “cheap-talk” in repeated games as an

example of how communication can help abstract from episodic

interactions to narrative-based modes of thought.

1 INTRODUCTION
Long-term human-robot interaction (HRI) should span months or

years. Such long-term interaction will necessarily shift interaction

from traditional fixed roles like supervisor and mentor [9, 11] to

more relationship-based roles like “durative assistant" or collabora-

tor [8]. This position paper uses the notion of narrative to create

a framework for understanding sustainable, meaningful, and pro-

ductive long-term HRI. The narrative framework is applied to a

specific HRI instance: longitudinal HRI between a human and a ro-

bot, where the robot is supported by big data learning and analytics

from a robot service provider.

New metaphors and artificial intelligence (AI) algorithms for

HRI are required to enable long-term interaction. This position

paper introduces two new metaphors: (a) long-term interaction

as a dynamic trajectory through memory, mental states, and dis-

positions, and (b) narrative as a means for shaping this dynamic
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trajectory. The paper also proposes a model for the “characters”

of the narrative, using a distributed robot service model. Finally,

the paper reviews how “cheap talk” in repeated games illustrates

some of the first steps for what the AI must look like to enable

longitudinal, narrative-based interactions.

Long-term interaction necessitates a pivot from episodic mea-

sures of interaction quality to longer-term measures. The shift from

episodic measures to longer-term measures means that we are not

trying to maximize engagement, minimize workload or maximize

transparency in any traditional sense; these local optimizations are

episodic means to achieve long-term objectives. For example, maxi-

mizing engagement can be done through gamification – setting up

artificial reward structures using things like giving points, enabling

upgrades in abilities or access to information, or unlocking new

characters or worlds.

Measures of the quality of longitudinal interactions tend toward

more comprehensive metric types. For example, “[With] enhanced

autonomy. ... [i]ndividuals are using their newly expanded practical

freedom to act and cooperate with others in ways that improve

the practiced experience of democracy, justice and development,

a critical culture, and community." [2, Chap.1]. Similar standards

for successful longitudinal interaction complement trends in defin-

ing success in user-system design, “users’ efficiency, safety, and

satisfaction have expanded to also include issues like meaning,

engagement, and fulfillment”[6, p.16]. Measurement classes like

meaning, justification, fulfillment, and community help highlight

how long-term interaction is fundamentally different from short-

term interaction. We now discuss the guiding metaphor for this

paper.

2 METAPHOR: LONG-TERM INTERACTION
AS A DYNAMIC TRAJECTORY

Long-term HRI requires new designs and metaphors to support

interactions between humans and robots that occur over many

days, weeks, months, or years. We propose the following metaphor

for such long-term interaction. Long-term interaction is a dynamic

trajectory through short-term episodic memory, long-termmemory

(including conceptual, declarative, procedural, and autobiographic),

mental states (including beliefs, desires, and intentions), and sub-

jective dispositions (including trust, frustration, satisfaction, and

sentiment). We recognize that this statement is vague, and a chal-

lenge for future work is to make this metaphor more precise and



practical. Another challenge is that the trajectory should probably

be thought of as passing through an even larger space or “land-

scape" as follows: the human experience in a long-term interaction

with a robot can be thought of as a trajectory through cognitive,

inter-subjective, emotional, social, cultural, physical, economic, so-

ciological, and organizational space.

Dynamic trajectories can reach both desirable and undesirable

equilibria. We choose the concept of trust in HRI to illustrate this

trajectory. Lee and See’s excellent overview of trust [14] builds on

Parasuraman and Riley’s identification of three undesirable steady

states associated with trust: misuse, disuse, and abuse [20]. Lee and

See emphasize misuse and disuse. Misuse includes over-reliance

on an automated system, accepting decisions and actions from the

system without appropriate evaluation, and a human does not feel

capable of determining when to override or intervene. Disuse in-

cludes under-reliance or abandonment of the system, often because

of errors committed by the system. There is much contemporary

work on “calibrating" trust, which often means cultivating expec-

tations and interaction frequencies that match performance and

allow automation errors to be caught and fixed [10].

A “trust trap" is an undesirable equilibria that can appear in

the dynamic trajectory as the service robots learn. They are un-

desirable because they are inefficient in the Pareto optimal sense,

meaning that there exist other equilibria that are better across most

or all relevant performance objectives that humans might value.

Specifically, trust traps will lead to misuse or disuse of the robots.

Conflicts and failures will arise between the people the robots serve

and the robots as robots make mistakes, etc. Since such conflicts

affect trust [10], inevitable conflict or failure makes a trust trap a

real possibility in long-term interaction.

3 DISTRIBUTED ROLES AND DATA
Embodied agents like Siri, Alexa, Cortana, etc. address this problem

using big-data approaches in which data collected from thousands

of similar devices used by thousands of users is used to update and

improve the capability of all such embodied agents. At the same

time, these agents can adapt to the particulars, peculiarities, and

preferences of an individual human. Thus, there exist two parallel

adaptations for these embodied agents: a generalized learning com-

ponent driven by big-data that occurs away from the device and a

specialized learning component that adapts to a particular human

or small group of humans.

The specialized individual adaptations and the generalized data-

driven adaptations lead to different ways of providing benefits to

humans. We adapt the following quote, written in the context of

using networked information to enable human values, to longi-

tudinal HRI (replacing “networked information economy" with

“longitudinal HRI" in the quote) [2, Chap.1]

[Ideally, longitudinal HRI] improves the practi-

cal capacity of individuals along three dimen-

sions: (1) it improves their capacity to do more

for and by themselves; (2) it enhances their ca-

pacity to do more in loose commonality with

others, without being constrained to organize

their relationship through a price system or

in traditional hierarchical models of social and

economic organization; and (3) it improves the

capacity of individuals to do more in formal

organizations that operate outside the market

sphere.

Of course, items (2) and (3) above are only implicit in the model

proposed in this paper – the “loose commonality” and “organiza-

tions ... outside the market sphere" are enabled through data-driven

learning managed by the service provider.

For longitudinal HRI, we consider long-term interactions be-

tween a robot (who is provided by a robot service) and a person

(who receives services from the robot). Because the robot receives

updates from the robot service and because humans will be aware

of this service provider, it is likely that humans will ascribe inten-

tion not only to the robot but also to the service or designers of the

robot [6]. Hancock et al. say it this way: “Although we are often

frustrated with technological shortcomings and failures and express

our frustration accordingly, at heart, we know we are dealing with

the residual effects of a remote human designer” [10, pg. 523]. The

way Crilly [6] illustrates the mental models associated with human,

robot, and designer is shown in Figure 1.

action
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Figure 1: Crilly’s mental models associated with human, ro-
bot, and designer. Adapted from [6].

For example, the robot service may provide service robots to

households. These service robots may provide any number of ser-

vices over a long period of time. As such, in each household, the

robot and robot services must establish and maintain a successful

long-term relationship with members of the household, with the

relationship modulated by attributed intention and capabilities to

the robot service.

Figure 2 illustrates the model for learning and adaptation that

we propose for long-term HRI: a generalized learning component

that resides at some service base and relies on data collected from

multiple robots and multiple humans, and a specialized learning

component localized within a particular set of locations and partic-

ular group of humans.

4 NARRATIVE
We propose that the robot’s behavior and speech acts, as well as

the service provider’s interactions with the customer should be

embedded into a coherent narrative. Part of the narrative is to
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Figure 2: A robot service provides robots to households. The
image here depicts the lines of communication (shown with
arrows) between the service and a single household. Solid ar-
rows indicate communication channels that the service can
use to create a narrative that helps establish and maintain a
successful relationship with the human customer.

organize and summarize previous interactions in a way that allows

the human to perceive and comprehend robot/service provider’s

intentions. Another part of the narrative is to embed future possible

interactions into a narrative that allows the human to project and

believe in the utility of future interactions, hopefully in such a way

that the overuse, misuse, and disuse trap is avoided.

We use Polletta et al.’s [21] description of how Labov and Walet-

sky [13] define narrative: “A narrative is an account of a sequence

of events in the order in which they occurred to make a point". Not

all narrative structures reveal plot in a linear sequence, but since

human experience proceeds in time, order is an acceptable element.

The generalized-learning/specialized-adaptation model provides

an approach that can enable a robot to learn enough to make it

possible for long-term HRI to be useful and extensible, but it does

not solve the problem of avoiding the overuse, misuse, or disuse

trap. A complementary model is required.

4.1 Why Narrative?
Narrative is compatible with long-term interaction because it en-

ables a natural and coherent representation of the world. “We think

in story. It’s hardwired in our brain. It’s how we make strategic
sense of the otherwise overwhelming world around us. Simply put,

the brain constantly seeks meaning from all the input thrown at it,

yanks out what’s important for our survival ... and tells us a story

about it, based on what it knows of our past experience with it,

how we feel about it, and how it might affect us " [7, Chapter 1,

emphasis added]. The story provides meaning and context for the

shared trajectory of human and robot.

Szilas describes the narrative hypothesis as meaning that narra-

tive is a basic mental construct by which a “large class of real-world

happenings [are interpreted]" [22, pg.134]. Regardless of whether

this hypothesis is correct, we propose that narrative can shape how

interaction episodes, with key features represented in the human’s

episodic memory, can be organized into a variant of autobiographi-

cal memory. In this variant, we trade the autobiographical memory

of the human for an intentional relationship memory, conceptual-

ized and organized using narrative cues and context provided by

the robot.

Deliberately using narrative to organize episodes therefore hypo-

thetically helps long-term interaction to evolve in such a way that

undesirable equilibria are avoided. Narrative can give context for

conflict and failure, as well as a path to resolving conflict and fail-

ures. The key task of the proposed research is to construct learning

algorithms and design interaction episodes to provide narrative-

based explanation. This requires a construction of ML algorithms

that take feedback experienced in episodic interactions, perhaps

over many interactions with many robots and many humans, and

constructs a plausible narrative that carries the long-term relation-

ship forward through desirable equilibria.

Stated another way, the task is to design an intentional narrative

that avoids or recovers from undesirable equilibria, such as the mis-

use, disuse, and overuse trap. Events will arise when the robot will

do something unexpected or that fails to meet expectations. Has the

narrative prior to those events produced expectations about these

failures and, shaped by intent and an understanding of the intent

holders, opened a path for rebuilding trust and overcoming conflict?

“Conflict is story’s lifeblood ... but conflict [must be] specific to the
protagonist’s quest" [7, Ch.1, emphasis in original]. The protagonist

can be either the robot, the human, or the service provider/designer,

and the quest is an evolving element of the narrative to support

quality of life for the human.

4.2 Bruner’s Landscapes
Bruner identifies two parts to narrative: “One is the landscape of

action, where the constituents are the arguments of action: agent,

intention or goal, situation, instrument, something corresponding

to a "story grammar." The other landscape is the landscape of con-

sciousness: what those involved in the action know, think, or feel,

or do not know, think, or feel" [3, Chapter 2]. We begin with the

action landscape by localizing specific robot-human interactions

or exchanges within the context of an episodic memory organized

according to a plot. We will then describe elements of the conscious-

ness in terms of intention and attribution.

Bruner’s landscapes provide a framework for designing and

evaluating narratives for real real systems. Stated another way,

these landscapes provide specific areas of future work and can be

used to extend computational narrative architectures [15].

4.2.1 Action Landscape: Episodes and Plot. The first element of

Bruner’s action landscape that we consider is an interaction episode.

Story-telling traditionally breaks a narrative that evolves over time

or even multiple generations into chapters. Each chapter captures

key ideas from an interaction episode (including conflict or changes

in intention or information). Each chapter is an episode that gives

context and meaning in how the plot-driven narrative evolves [7].

The relationship between a narrative and interaction episodes is

complex for a number of reasons. Most obviously, a robot designer

may refer to an hour-long interaction between a human and a

robot as an interaction episode, but this is much different from the

notion of episodic memory as used in cognitive science. This section

reviews how interaction episodes can be related to episodic memory

and then aggregated into what we call a relationship biography,
beginning with a description of episodic memory.

In his great primer on working memory, Baddeley describes

episodic memory as follows, “[Episodic memory is a buffer that]



is capable of holding multidimensional episodes or chunks, which

may combine visual and auditory information possibly also with

smell and taste. It is a buffer in that it provides a temporary store

in which the various components of working memory, each based

on a different coding system, can interact through participation

in a multidimensional code, and can interface with information

from perception and long-term memory" [1]. Episodic memory

in this sense is an integration locus, where the visual short-term

memory store, the phonological loop, and long-term memory blend

to combine bottom-up perceptual processing with the top-down

semantic meaning.

Conway proposes a hierarchical model that uses episodic mem-

ories as the basic building block [4]. Two key ideas are used in

this model. First, even though episodic memories are short-term,

meaning that the ability for humans to recall intentionally episodic

memories decreases over time, contextual cues can trigger the rec-

ollection of these episodic memories over a period of days and

sometimes longer. Thus, episodic memories are short-term in terms

of intentional recall but longer-term in terms of their responsive-

ness to cued recall. Second, episodic memories are augmented with

conceptual knowledge to form more long-lasting memories. “There

is ... evidence that episodic memories are crucial in the acquisition

of new knowledge and learners may pass through a phase during

which knowledge is gradually abstracted from episodic memories

in the process of becoming part of more general long-term con-

ceptual knowledge” [4, pg.2307]. Episodic memories, linked with

conceptual knowledge, can be abstracted and linked to form a frame,

and frames and events can be linked with notions of a “concep-

tual self” to form autobiographical knowledge. Thus, Conway’s

model suggests that episodic memories, suitably associated with

conceptual knowledge, are the building block from which autobio-

graphical knowledge is constructed. Some computational models

use abstraction and conceptual linking to promote efficient memory

retrieval, though such work does not go all the way toward form-

ing autobiographical memory [12]. Another cognitive architecture

seeks to connect “episodic memory and procedures [akin to Con-

way’s conceptual knowledge] can be redefined in terms of narrative

structures" [15]. The idea of this architecture is that narrative is a

fundamental way of “storing material in memory”.

In terms of the narrative trajectory, episodes are temporally lim-

ited interactions between a human and a robot, localized in time

and space and in a specific context. We propose that the human

way of chunking experiences and the evolving robot capability of

engaging in experiences can best be coordinated by deliberating

choosing local human-robot interactions so that they move a plot

(see the next section) along. The overall narrative is punctuated by

localized interaction episodes that shape shared cognition, shared

experiences, empathy, and the space of possible shared and individ-

ual intentions. The localized interaction may be successful in terms

of task achievement or it may fail, but it will affect the trust dynamic

(e.g., trust traps) and expectations about future interactions.

The second element of Bruner’s action landscape that we con-

sider is plot. Like a reader of a story, a human engaged in long-term

interaction with a robot may ask, “1. Whose story is it? 2. What’s

happening here? 3. What’s at stake?" [7, Chapter 1]. Thus, the nar-

rative provided to the human by the robot and robot service must

touch on plot. Bruner states that “[t]he plot is how and in what

order the reader becomes aware of what happened. ...[T]he ‘same’

story can be told in different sequence[s]” [3, Chapter 1]. Polleta et
al. further states that “only relevant events are included in the story,

and later events are assumed to explain earlier ones. The causal

links between events, however, are based not on formal logic or

probability but on plot. Plot is the structure of the story”[21, p.111].

A challenge in communicating plot in longitudinal HRI is that,

unlike story-telling with a known plot, longitudinal HRI requires

the plot to evolve as events unfold and as new knowledge, skills,

and awareness are acquired. As such, we hypothesize that the

effective communication of plot in longitudinal HRI will have two

components. First, the narrative should comment on and interpret

events as they unfold. Second, the narrative should foreshadow how

future interaction episodes will unfold. Importantly, this narrative

should help the human identify how the behavior of the human,

the robot, and the robot service can and will influence the future

states and events of the interaction.

4.2.2 Consciousness Landscape: Intention, Attribution, and Re-
pair. In addition to the action landscape, Bruner also identifies a con-
sciousness landscape. The first element of Bruner’s consciousness

landscape is intention, and in particular the intention of the char-

acters or subjects of the narrative. For example, Bruner writes that

“narrative deals with the vicissitudes of human intentions" [3, Chap-

ter 2], making these vicissitudes the common theme that Bruner

says is shared by (almost all) meaningful stories. Malle states that

the “concept of intentionality is essential to people’s descriptions

and explanations of behavior” [17, pg. 116]. In longitudinal HRI en-

abled by a robot service, intention can be attributed by the human(s)

to both the robot and the robot service provider or designer [6].

This line of thought re-focuses the design of human-robot sys-

tems away from the problem of creating perfect robot autonomy

to the problem of identifying failures, attributing these failures to

proper sources, and then creating a believable narrative that repairs

and re-calibrates human trust in the system, while communicating

a believable plan of future improvements. Much work needs to be

done in this line of reasoning, but learning and shaping intention

(the robot’s, the robot service provider’s, and the human’s) is one

way to abstract episodes into plots.

The second and third elements of Bruner’s consciousness land-

scape are attribution and repair, respectively. Work on attribution

has studied asymmetries in how people explain their own behavior

as opposed to how they explain the behavior of others. Jones and

Nisbett initially presented evidence that people are more likely to

cite situation causes to explain their own behavior, but are more

likely to attribute the behavior of others to personal disposition.

Malle [16] later demonstrated through a meta-analysis that this

theory did not fully hold, but verified that asymmetries in how

people attribute blame to themselves and others do exist [18].

Knowledge of the asymmetries in attribution of blame highlight

a number of questions relevant to how a service robot and robot

service should address the attribution of blame when the robot

makes mistakes or otherwise fails to deliver what the human ex-

pects. These questions include: What attributions of blame should

the robot and robot service voice in their narratives? How should

these attributions of blame be communicated? And finally, who has

the responsibility for overcoming the problem?



C D
C 60, 60 0, 100

D 100, 0 20, 20

Table 1: A payoffmatrix defining the well-known Prisoner’s
Dilemma. In each round, Player 1 selects the row, while
Player 2 selects the column. The resulting cell of the ma-
trix specifies the payoffs obtained by players 1 and 2, respec-
tively, in the round.

This latter question moves us to the next item in Bruner’s land-

scape of consciousness: repair. Errors or failures by the robot to

satisfy the human’s intent are likely to lead distrust, which in turn

can lead to misuse or disuse of the robot in the future, and attribu-

tions of blame can potentially even exacerbate the problem. In such

situations, it is important for the robot or robot-service to create a

narrative of how these errors and failures can be overcome in the

future. Such repairs to the relationship involve both communicating

a plan for how such failures will be overcome, and subsequently

following through with the plan in a satisfactory nature.

Much work needs to be done in this area to create an opera-

tional narrative-based interaction method, but Bruner’s landscapes

provide a framework under which designs can be created and eval-

uated.

5 BUILDING NARRATIVE AI TO ENABLE
LONG-TERM HRI

We hypothesize that narrative can play a critical role in enabling

long-term HRI. To support this claim, we appeal to past work study-

ing human-human and human-robot interactions in repeated games.

This past work highlights how people and robots can enhance and

preserve relationships using cheap talk. We then relate how this

cheap talk expresses important, albeit primitive, parts of narrative

by relating it to the elements of narrative articulated by Bruner.

5.1 Modeling Long-Term Relationships as
Repeated Games

A long-term relationship between a human and a robot is created

by a sequence of interactions between the human and robot across

which both entities seek to achieve their objectives. These interac-

tions can somewhat abstractly be modeled using repeated games [5].

In a repeated game, players engage in a series of rounds (or episodes)

of interaction. In each round, each player independently selects an

action. The resulting joint action produces an outcome described

by a payoff to each player for that round. Over the course of the

repeated game (i.e., throughout all rounds of the game), each player

seeks to maximize its payoffs.

As an example, consider the well-known prisoner’s dilemma. In a

repeated prisoner’s dilemma game, the same two players repeatedly

play the bi-matrix game depicted in Table 1. In each round, the

players select a row or column, respectively, of the payoff matrix,

which produces the round’s payoff for both players. Thus, the

dynamics of the actions chosen by the players over time determines

in large part the quality of the player’s relationship. While each
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Figure 3: Proportion of mutual cooperation achieved by
Human-Human and Human-Bot (where the bot was con-
trolled by the algorithm S#) pairings across several repeated
games as reported in prior work. Figure adapted from Cran-
dall et al. [5]. Error bars show the standard error of the
mean.

player individually benefits in each round by defecting (action D),

this results in a low payoff to both players. Thus, if the players

repeatedly defect against each other, they both will likely want to

discontinue the relationship since it is not profitable. However, if the

players could somehow convince each other to cooperate (action

C) in each round, they would both receive much more benefit from

the relationship, and would be more likely to want to continue to

interact with each other.

Repeated games with cheap talk [5, 19] offer an even richer

model of long-term interactions. These games are similar to re-

peated games, except that they allow players to send a set of cost-

less signals (known as cheap talk) to each other prior to acting in

each round. As we demonstrate in the remainder of this section, the

ability to communicated via speech acts allows a player to create

narrative by signaling what it plans to do in the future (express

their intent), proposing joint solutions for the players to following

together (proposals of shared intent), and reflecting on the results

of previous rounds. Thus, by carefully selecting and combining

together speech acts, players can use cheap talk to compose nar-

ratives of the players’ relationship and joint experience, both past

and future. Such narratives, if constructed properly, can enhance

and sustain long-term human-robot relationships.

5.2 The Impact of Cheap Talk
Prior work illustrates the power of narrative in long-term human-

robot interactions to enhance human-robot interactions in repeated

games. One study [5], whose results are summarized in Figure 3,

found that two people typically do not form cooperative relation-

ships in repeated games in which they cannot engage in cheap

talk. However, when two people are allowed to send each other

messages prior to acting in each round, the amount of mutual co-

operation doubled. A nearly identical trend was observed, across

the same scenarios, when a human was paired with a bot following
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Figure 4: Selected results of a user study reported by Oudah et al. [19]. Results are shown only for the case in which the bot
used the algorithm S# to select actions and speech acts. (a) The proportion of rounds that the human partner cooperated for
each form of cheap talk. (b) The attraction index measuring people’s affinity for interacting with a bot for each form of cheap
talk. (c) The degree to which people thought there partner (the bot) was trustworthy for each form of cheap talk. In all plots,
error bars show the standard error of the mean. See Oudah et al. [19] for details about how each variable was measured and
calculated.

the algorithm S#, a result that demonstrates that bots likewise can

and should use cheap talk to improve their long-term relationships

with people.

In subsequent work, Oudah et al. [19] considered how using

different kinds of speech acts (or form of cheap talk) impact not only

a bot’s ability to forge cooperative relationships with people, but

also people’s desires to continue to interact with the bot when given

the choice. We focus on three different forms of cheap talk, each of

which used a different form of cheap talk generated using the S#

algorithm. These forms of cheap talk were Carnegie (which can be

loosely defined as a friendly form of communicating), Biff (which

can be loosely defined as an unfriendly way of communicating),

and Thumper (which did not use any cheap talk).

Oudah et al. [19] found, via user study, that both Carnegie

and Biff influenced people to cooperate with it better than did

Thumper (Figure 4a). This caused Carnegie and Biff to receive

higher rewards across the full repeated game than did Thumper.

However, the cheap talk generated by Biff, as well as the lack of

narrative produced by Thumper, caused people to be less disposed

to want to interact with these bots further (as opposed to Carnegie;

see Figure 4b). Post-experiment surveys revealed that both Biff

and Thumper were not liked by study participants as much as

Carnegie, and that Thumper was viewed as being significantly

less trustworthy than both Carnegie and Biff (Figure 4c).

These examples from prior work illustrate that cheap talk can

play a critical role in preserving and enhancing longitudinal human

robot interactions. In particular, the bots were able to use cheap

talk to (a) increase the amount of cooperation between humans and

bots, (b) make humans more inclined to continue to interact with

them, and (c) increase its perceived trustworthiness. In the next

section, we consider the degree to which this cheap talk relates to

the construction of narrative.

5.3 Cheap Talk as Narrative
Recall that our goal is to learn to produce an intentional narrative

that avoids or recovers from undesirable equilibria or outcomes,

such as misuse, disuse, and overuse traps. We now consider to what

degree the cheap talk used in the previously discussed prior work

does this. In particular, we focus on how and to what degree S#, the

algorithm used to select speech acts in that prior work, produces

the elements of narrative discussed by Bruner [3].

We begin by discussing how S# develops the landscape of action,

which deals with episodes and the construction of the plot. We then

discuss the landscape of consciousness, which deals with intentions,

attribution, and repair.

5.3.1 Developing the Landscape of Action. In repeated games

with cheap talk pair, the two players are the subject of the narra-

tive, which is given voice by the speech acts selected by the bot.

Each player has the high-arching goal to maximize its individual

individual payoffs. These payoffs depend on the actions taken in

each round of the game by the players. We can view each round as

a separate episode of interaction, and the complete relationship is

the sequence of these interactions.

The algorithm S# [5] creates an internal memory of the interac-

tion using a finite-state machine. This finite-state machine encodes

the algorithm’s internal state combined with game-invariant events

that are triggered by the actions taken by the players in the game.

In a sense, this finite-state machine encodes the episodic memory

of the agent (i.e., the memory of recent episodes), viewed in the

context of S#’s current internal state, that have most recently oc-

curred. S# also compiles into long-term memory a rudimentary

summary of all past episodes by counting the number of times that

each game-invariant event has occurred.

To voice a narrative of the interaction, S# uses its finite-state

machine to identify the category of speech acts it should voice.



Table 2: Speech acts for the form of cheap talk called
Carnegie. See Oudah et al. [19].

ID Speech act
0 Let’s always play <solution>.

1 Let’s alternate between <solution> and <solution>.

2 This round, let’s play <solution>.

3 if we can agree, we’ll both benefit.

4 let’s explore other options that may be better for us.

5

good idea. as expected from a generous person like u. I

accept your proposal.

6

good proposal. if u show that u are trustworthy, I will

consider accepting it in the future.

7 a fairer proposal would work to your benefit.

8 your payoffs can be higher than this.

9

what u did is totally understandable, though it will not

benefit u in the long run.

10

in the next round comes the expected penalty, but we can

then return to cooperating.

11 I’m really sorry I had to do that.

12 let’s move on. I am sure we can get along.

13 excellent! Thanks for cooperating with me.

The specific speech acts selected for these categories based on both

the form of cheap talk being used and the rudimentary summary

of episodes that S# stores in its long-term memory (see Oudah et

al. [19] for details). Example speech acts for Carnegie [19] are

shown in Table 2.

The sequence of speech acts produced by S# using this mech-

anism voices the plot of the human-robot interaction. It does so

in two ways. First, the speech acts generated by S#’ in each round

often reflect on previous (typically recent) episodes. For example,

after a round in which S# receives a satisfactory payoff, S# voices

speech act #13 (“excellent! Thanks for cooperating with me.”). Second,
S#’s speech acts often foreshadow the plot of future episodes. As

an example, after being exploited in a round, S# uses speech act

#10. This speech act not only foreshadows what will happen in

the next round, but also hints at potential outcome of subsequent

rounds. Furthermore, after punishing its associates defection in the

next round, S# voices speech act #11 (“I’m really sorry I had to do
that.”). This sequence of speech acts links together causally related

episodes to create a richer narrative of the interaction.

5.3.2 Developing the Landscape of Consciousness. Recall that
Bruner’s landscape of consciousness refers to the part of the narrative
that answers questions of what the subjects of the narrative know,

think, and feel. In particular, this aspect of the narrative reveals the

intentions of the agents, their attributions of blame or credit when

intentions are not met, and their attempts to repair damage when

the intentions of one or more of the subjects of the narrative are

not satisfied.

Intentions are an important part of narratives generated by S#.

The individual intention of each player is to maximize it’s own

payoffs throughout the course of the repeated game. When using

Carnegie as its form of cheap talk, S# acknowledges the other

player’s intention repeatedly (for example, see speech acts 3, 4, 7, 8,

and 9). Biff, on the other hand, focus its narrative more on its own

intentions [19].

Another way in which S# invokes intention in its narratives is

in the form of shared intent. For example, S# sometimes expresses,

via cheap talk, a desire to cooperate by specifying a cooperative

solution (using speech act #0) or a desire to find a fair solution

(speech act #7). We note that, in other results presented by Oudah

et al. [19] but not reviewed here, the ability to express shared intent

in this form appears to be a substantial part of the bot’s ability to

enhance and preserve relationships, as the absence of this capability

produced substantially inferior results in repeated games.

When the intentions of the players are not satisfied, narrative

often involves blame (or other forms of attribution). In repeated

games, players can either put the blame on themselves, their part-

ner, or the difficulty of the game (produced by the conflicts present

in the payoff matrix). The way that S# ascribes blame depends on

the form of cheap talk used. Carnegie typically expresses blame

indirectly. For example, after its partner does not cooperate as ex-

pected, it indirectly points out its partner’s error (using speech acts

#9-10). On the other hand, Biff takes a more direct approach in

the same situation by saying “selfish traitor! you’ve treated me very
unfairly.” We anticipate that these alternative manners for com-

municating blame were a primary cause for differences of human

opinion toward Biff and Carnegie found by Oudah et al. [19].
Finally, once blame has been voiced or inferred in the narrative,

an important aspect of the narrative is to repair. S# does this using

speech acts #11 and #12. More specifically, once S# forgives its

partner for having violated a shared intention, it states, “let’s move
on. I am sure we can get along.” This speech act is designed to move

the relationship on from the past in a new direction, and hence can

be a powerful aspect of the narrative. While the results of the study

reported by Oudah et al. appear to indicate that this repair is largely
successful with respect to returning the players to a state of mutual

cooperation, it seems possible from the results that the repair is not

complete in the case of Biff (as indicated by low desire of people

to want to continue to interact with Biff; Figure 4b).

6 CONCLUSION
Our position is that robots and robot services can use effective

narrative to preserve and enhance long-term human-robot inter-

actions. In this paper, we have established a metaphor equating

long-term HRI as a dynamic trajectory through narrative space. In

so doing, we identified and discussed the important elements of

narrative. We then appealed to prior work in repeated games [5, 19]

to illustrate that narrative produced by cheap talk can be utilized

to overcome conflict and shortcomings in longitudinal interactions

between a person and a bot. We believe that future work should

better identify how to create narratives that allow robots to avoid

undesirable equilibria, including the overuse, misuse, and disuse of

robots, in human-robot relationships designed to endure over long

periods of time.
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