0-7803-7398-7/02/$17.00 ©2002 IEEE

Proceedings of the 2002 IEEE/RSJ

Intl. Conference on Intelligent Robots and Systems

EPFL, Lausanne, Switzerland « October 2002

Characterizing Efficiency of Human Robot Interaction:
A Case Study of Shared-Control Teleoperation

Jacob W. Crandall and Michael A. Goodrich

Computer Science Department, Brigham Young University

Abstract

Human-robot interaction is becoming an increasingly
important research area. In this paper, we present a
theoretical characterization of interaction efficiency
with an eye towards designing a human-robot system

with adjustable robot autonomy. In our approach,

we analyze how modifying robot control schemes for
a given autonomy mode can increase system perfor-
mance and decrease workload demands on the hu-
man operator. We then perform a case study of the
design of a shared-control teleoperation scheme and
compare interaction efficiency against a traditional
manual-control teleoperation scheme.

1 Introduction

In many problem domains, such as search-and-
rescue, exploration, and hazardous waste clean-up,
many applications, it is desirable to allow a human to
interact with multiple robots. Unfortunately, there
is a limit to how many tasks a human can manage
in a given time. This means that the number of in-
dependent robots in a human-robot team is limited.
To understand how many robots a human can man-
age, it is necessary to understand how humans in-
teract with individual robots under varying circum-
stances. The likely performance of a particular in-
teraction scheme encodes this efficiency, but this per-
formance degrades as human workload and environ-
mental complexity increase. Thus, it is important to
understand how the likely performance of an inter-
action scheme changes as a function of workload and
complexity because such an understanding allows us
to predict the performance of a team of many robots.

Formally, an interaction scheme consists of the au-
tonomy mode of the robot and the interface be-
tween human and robot. In this paper, we present
a theoretical framework for understanding how the
expected performance of a particular interaction
scheme changes as robots are neglected and as world
complexity increases. We then present results from
a case study that compares the neglect and complex-
ity tolerance of two autonomy modes under identical

1290

control and information elements. These results are
a first step toward validating the theoretical frame-
work. We conclude by discussing how the frame-
work can be further validated and how the validated
framework can be used to guide the design of human-
robot sytems.

2 Related Literature

While different levels of autonomy have been stud-
ied extensively, research in teleoperation is most ma-
ture [7]. The standard approach for dealing with
communication delays, intermittency, and other is-
sues is to use supervisory control. Work on teleau-
tonomy [3] and behavior-based teleoperation [8] are
extensions to traditional supervisory control that
are designed specifically to account for time delays.
Of particular interest are approaches to behavior-
based design of robots that can interact with hu-
mans. Arkin and Ali’s work has been particularly
relevant to our research [1]. They present experimen-
tal results for hundreds of test subjects of a shared-
control system that allows a human to interact with
a team of simple behavior-based robots. In measur-
ing the effectiveness of human-machine interaction,
much work has been done on operator workload. Of
particular relevance is Boer’s work relating workload
and entropy [2]. In addition, Boer has used sec-
ondary tasks to help evaluate the cognitive workload
placed on human operators.

3 Interaction Efficiency

As stated in the introduction, one purpose of this
paper is to present a theoretical framework for char-
acterizing the efficiency of human-robot interaction.
This framework is built on the intuition that the
likely performance of human-robot interaction de-
grades as the human neglects the robot to perform
other tasks and as world complexity increases.

3.1 Framework

Consider the design of optimal controllers. The de-
sign of such controllers is the task of choosing a con-



trol law 7 that maps observations (states) of the en-
vironment s into actions a in such a way that perfor-
mance is maximized (or cost is minimized). Formally
and in our notation, the objective of an optimal con-
troller can be stated as follows:

Maximize :
J(m) = E Y ®(sisn) + A(m(si))| (1)
k
Subject to:
Sk+1 = f(8k,ax) 2

where ®(si) is the payoff of visiting state s, on a
path to a goal, A(w(sy)) is the payoff for using con-
trol action ar = 7(sg), the sum indicates that per-
formance is accumulated over time, f(sg,ax) is a
model that describes how action a at time k trans-
lates the state sy into a new state sx.1, and E(-)
indicates an expectation. Expectation is included
since the dynamics model may be probabilistic (e.g.,
as in Markov decision processes). An optimal con-
trol law 7 is the mapping from states to actions that
maximizes the expected payoff subject to the con-
straint imposed by the way inputs change the state
of the world.

In human-robot interaction, the behavior of the
robot is produced by a control law that accepts hu-
man input. Thus, we generalize the notion of a con-
trol law to include the closed loop of human-robot in-
teraction, and replace the term control law with the
term interaction scheme. The interaction between a
human and a robot is diagrammed in Figure 1 which
illustrates the interface between human and robot

Figure 1: The interface loop and autonomy loop for
human-robot interaction.

as well as the autonomy loop between robot and
world. Recall from the introduction that an inter-
action scheme consists of the autonomy mode of the
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robot, and the interface between human and robot.
The interface is made up of the control element used
by the human to communicate information to the
robot, and the information element used by the robot
to communicate to the human. The autonomy mode
refers to the closed loop behavior of the robot in the
world, and the control and information elements re-
fer to the closed loop behavior of the robot in the
interface with the human.

In human-robot interaction, the action a; is com-
posed of both robot input and human input. Since
human attention is switched between multiple tasks,
the action a is not influenced by a human at every
sample interval. The effective rate of interaction be-
tween the robot and the human is a random variable
that strongly influences the performance J. Interac-
tion schemes 7 that are designed for frequent human
input will not produce high payoffs when humans in-
teract less frequently. We generalize the notion of
interaction rate to neglect and denote this by the
random process N. The notion of neglect includes
the possibility of variable interaction rates, multiple
tasks, and switching costs.

In addition to the influence of N, the expected per-
formance J(m) of a particular interaction scheme 7
is also affected by how the world responds to robot
actions. The manner in which the world responds
is encoded in Equation (2) as the function f(sk,ax)-
Since many of the worlds in which robots will ben-
efit by human interaction are highly dynamic and
complex, the environment function f is a random
process. We will restrict attention to fixed domains
whence we assume that the qualitative characteris-
tics of f stay the same, but the complexity of the
environment, denoted by C, can change. Interaction
schemes that are designed for a particular level of
environmental complexity may not perform well for
other environment complexities.

In Equation (1), the expected payoff J for a par-
ticular interaction scheme 7 is a scalar value, but
when the influence of neglect N and complexity C
are taken into consideration J also becomes a ran-
dom process. In general, as complexity or neglect
increases, expected performance decreases as illus-
trated in Figure 2. The trend that performance de-
creases as neglect or complexity increase characterize
both the interface and autonomy loops in Figure 1,
respectively. The plot J(m; N, C) characterizes how
performance generated by a particular interaction
scheme is influenced by interaction rate and com-
plexity.

3.2 Performance Depends on Neglect

To enable a human to manage multiple tasks (in-
cluding interacting with multiple robots), it is nec-
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Figure 2: Conceptual depiction of performance,
J(m; N,C), for interaction scheme 7 as a function
of neglect and task/world complezity.

essary to know how long a human can give atten-
tion to one robot before the performance of the
other tasks deteriorate. The relationship between
neglect and expected performance can be character-
ized using the neglect curve illustrated in Figure 3
for a human-robot system under various autonomy
modes. The idea of the neglect curve is simple. In-
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Figure 3: Conceptual depiction of neglect, J(m; N),
for various autonomy modes.

teraction scheme A’s likely effectiveness, which mea-
sures how well the human-robot system accomplishes
its assigned task and how compatible the current
task is with the human’s objective, decreases when
the human turns attention from the task to a sec-
ondary task; when the task is neglected the interac-
tion scheme becomes less effective.

The neglect curve can be used to determine how often
we would expect interactions to occur to maintain a
level of performance. To prevent the performance of
an interaction scheme from dropping below an ac-
ceptable level, the robot can only be neglected for a
certain period of time defined as the time spent off
the task plus the time spent on the task bringing the
performance back to a high level. The acceptable
neglect time (time-off-task) includes both the time
spent on other tasks as well as the time to switch
attention.
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3.3 Performance Depends on Complexity

To illustrate how world complexity can impact per-
formance, consider how neglect tolerance depends on
the number of branches and amount of clutter in an
environment. If the world has minimal clutter and
very few branches, then the robot can be neglected
for an extended period of time. If, however, the world
is cluttered and has many branches, then uncertainty
will increase causing the robot to be less tolerant to
neglect. Thus, performance decreases as complexity
and neglect increase.

3.4 Performance Depends on Information
and Control

Given the curves that describe the expected perfor-
mance of interaction as a function of neglect and
complexity, J(m; N,C), it is appropriate to explore
how presenting information affects this efficiency. An
information system can increase neglect tolerance
primarily by decreasing the amount of time required
for the human to switch attention from another task
and gain relevant situation awareness for the partic-
ular robot. The information presented by such sys-
tems performs three objectives: it triggers an atten-
tion switch from a secondary task to a relevant robot
interaction task, it speeds up the time to switch be-
tween the secondary task and the interaction task
by helping the human get ”in the loop” faster, and
it helps the human perform the task more quickly
thereby decreasing time-on-task. Unfortunately, a
poorly designed information system may cause the
process of gathering information to become a task
in and of itself. This effectually extends the time
to switch from a secondary task by compelling the
human to attend to the information task before at-
tending to the primary decision task.

Similar to the way in which information can change
the characteristics of interaction, the manner of giv-
ing information to the robot also changes these char-
acteristics. For example, if a control scheme is very
complex, the human may have difficulty forming an
efficient mental model of the interaction. Without
an efficient mental model, the process of presenting
information to the robot may become a task in and
of itself. This effectually extends the time to switch
from a secondary task by compelling the human to
attend to the control task after attending to the pri-
mary decision task.

4 Shared Control

The purpose of this section is to explain the shared-
control teleoperation system that we have created.
The development of this system was described in [4],
but we will review this algorithm and present more



complete experimental results in this paper. The
system consists of a Nomad SuperScout robot and
a remote computer. The remote computer and the
robot are connected via an 11Mb/s wireless ethernet.
A GUI displays video, sonar readings, and compass
information from the robot. Through a Microsoft
SinderWinder II Force Feedback Joystick, the human
guides the robot.

Influence of obstacle
avoiding behaviors

Sonar readings

Resulting action

Figure 4: A graphical depiction of the algorithm for
a robot positioned in a hallway with a door open on
the robot’s right. Raw sonar readings (left); relevant
behaviors (right); resultant robot action (bottom).

Our approach to shared-control teleoperation uses
a variant of potential fields. In the algorithm, the
angle of each sonar is associated with a behavior.
Sonar distances are classified into three categories:
repelling, neutral, and attracting. If the sonar re-
turns a distance greater than a pre-defined safe dis-
tance (65 inches in our experiments) then the cor-
responding behavior is categorized as an attracting
behavior. If the sonar returns a distance less than
a pre-defined risk distance (40 inches in our exper-
iments) then the corresponding behavior is catego-
rized as a repelling behavior. For other sonars, the
corresponding behavior is categorized as a neutral
behavior.

Given these categorizations, the attracting behav-
iors are assigned strengths according to how close
their angles are to the human input. Angles that
are nearby are given large strengths, and angles that
are far away are given zero strength. Similarly, the
repelling behaviors are weighted by how close their
angles are to the human input. Unlike attracting be-
haviors, however, the strength of each repelling be-
havior is also weighted by the distances they return;
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small distances indicate imminent obstacles which
are therefore given high strength. After the strength
of each behavior is obtained, the behavior vectors
are summed with the human input vector to produce
the resulting direction that the robot will move. The
strengths used in the experiments presented herein
are given in [4].

This process is illustrated in Figure 4. In the fig-
ure, the human tells the robot to go forward and left
(top left image). Sonar readings that are relevant are
identified (top right image). Those behaviors that
would move the robot toward an opening (as indi-
cated by the sonar reading terminating in the outer
shaded circle) in the world pull the robot toward the
opening, and those behaviors that would move the
robot toward a nearby obstacle (as indicated by the
sonar reading terminating in the inner shaded circle)
push the robot away from the obstacle. These pulls
and pushes are combined with the human input to
specify the direction that the robot will go (bottom
image); in the example, the robot will still go for-
ward and left, but will not go as far to the left as
suggested by the human.

Since vector summation in a potential fields algo-
rithm allows for some obstacle-avoiding behaviors
to cancel out, the robot can sometimes be directed
into an obstacle. To avoid this, we include a safe-
guarding [5, 6] behavior, which can veto the direc-
tion. Using all sixteen sonar readings we define a
safe region by simply finding the points at which
the sonars indicate that there are objects. Connect-
ing these points yields a polygon with sixteen sides,
which makes up the safe region. The robot can pre-
dict its position at some future time ¢ given that
it continues the course it has selected. If the robot
thinks it will leave the safe region anytime in the near
future, the direction is vetoed and the robot defaults
to a behavior that causes the robot to rotate slowly
in place towards the nearest perceived clear pathway.

5 Validation Experiment

In this section, we present an experiment to compare
the shared-control teleoperation system described
above with a direct-control teleoperation system.
The two schemes both use a joystick as the control
element and both use a video display and graphi-
cal depictions of sonar readings as the information
element. The interaction schemes differ by the au-
tonomy mode, shared control or direct control. First,
we describe the experiment and then we explain the
criteria and results.

5.1 Experiment Description

The primary task in the experiments is to guide a
robot through a cluttered course with simple deci-



sion points. The course is illustrated in Figure 5. In

Figure 5: The environment used to measure neglect.

experiments involving human cognitive load, experi-
ment participants are sometimes asked to perform a
secondary task (or tasks) as they perform a primary

task [2]. In our experiment, subjects must solve two

digit addition problems while performing the robot
guidance task.

As a rule, experiment participants should not have
experience driving the robot. This ensures that no
biases are introduced due to past training. For each
participant, the following steps are followed:

Step 1. The math proficiency level of the partic-
ipant is determined. Two digit addition problems
are displayed on the screen along with four multi-
ple choice answers (only one being the correct an-
swer). The participant is given 5 seconds to answer
the question. A log of math proficiency is kept. After
the participant answers the question, he or she may
proceed to a new problem by clicking on a button.
This proficiency test lasts for two minutes. If the
participant cannot successfully complete 60% of the
problems, the difficulty level is reduced to adding a
two-digit number to a one-digit number.

Step 2. Next, the participant must be trained to
guide the robot using a particular autonomy mode.
Scheme S is the Shared-control teleoperation scheme,
and Scheme D is a traditional Direct-control teleop-

eration scheme. In order to not bias results, some

participants are trained and tested on Scheme A
first, and others are trained and tested on Scheme
B first. After completing initial training, the partic-
ipant is asked to guide the robot through the course
as quickly as possible. While doing so, he or she
must look out for the safety of the robot. Training
is complete when the subject has successfully guided
the robot through the course one time.

Step 3. The participant is asked to again guide the
robot through the course. This time, the participant
is asked to do math problems as he or she drives
the robot. The participant is instructed to guide the
robot through the course as quickly as possible, and
to answer as many math problems in this time as he
or she can, while making sure the robot is safe.
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Figure 6: Robot effectiveness verses neglect rate.
The vertical axis represents robot performance (as a
percentage or mazrimum effectiveness) and the hori-
zontal azis represents neglect (in terms of percentage
of time off task).

Steps 4—6. The participant repeats steps 2-3 using
the other control scheme. That is, if the participant
started with Scheme S, then he or she is next tested
on Scheme D and vice versa.

5.2 Evaluation Criteria and Results

In this experiment, we fix the level of complexity
and explore how interaction efficiency is affected by
human neglect. The best interaction scheme for a
given level of complexity is the system that can move
the knee of the neglect curve as far to the right as
possible. In general, a lower workload imposed by
an interaction scheme means the operator is free to
neglect the robot more. This, in turn, means that
the knee of the curve will be moved right, assum-
ing that performance level doesn’t decrease. There
are several ways that we show neglect and workload
in our system, and these measurements and results
are described in the following subsections. Figure 6
shows robot effectiveness verses neglect for the task
performed in the experiment; note that the shared-
control system (the outlined circles) dominates the
direct-control system (the dark circles) for each par-
ticipant on the given task.

Neglect Rates Neglect time is the amount of time
spent doing other tasks. Thus, neglect is the time
spent solving arithmetic problems divided by the to-
tal time of the trial run. In the experiments, the
four participants were able to neglect the robot an
average of 50% more using shared control than direct
control.

Joystick Steering Entropy We obtain the joystick
steering entropy for each participant using the algo-
rithm described in [2]. Slight adjustments are made
to this algorithm, but they are small. Note, how-
ever, that entropy data from this paper should not
be compared to entropy readings in [2]. Entropy rat-



ings range between 0 and 1. A high entropy rating
means that joystick movements are choppy and thus
indicates that the operate is under a higher work-
load. Thus, lower entropy ratings indicate that the
operator has a lower and more manageable workload.

In the experiments, joystick steering entropy was
considerably higher on this task for the direct-control
system. On average, entropy increased by just over
50% when the direct-control system was used. This
indicates that the cognitive workload was higher for
direct-control than shared-control. These results are
consistent with the results on neglect rates, since
workload and neglect rates should have a significant
negative correlation.

Primary Task Effectiveness This is how well the
participant did in driving the robot through the
course. The judgement of how well a task was per-
formed is established simply by how much time it
takes to get the robot around the building. The dis-
tance the robot is required to travel and maximum
robot speed dictates that it take at least 170 seconds
to get through the course. We base performance off
this number: Per formance = Wmﬁa % 100. In
the experiments, performance levels for the shared-
control system exceeded performance levels of the
direct-control system by an average of about 35%.

Secondary Task Effectiveness This is a measure-
ment of how well the participant performed on the
arithmetic problems. Both the number of problems
completed per minute and the problem proficiency
are important. Since each participant’s math abili-
ties differ, only comparisons between how well a par-
ticipant performed in different control schemes is rel-
evant. It is theorized that participants should per-
form better on the secondary task when they have a
lower workload imposed by the primary robot con-
trol task. In the experiments, the secondary task
results correlate with the results of all the other
recorded data for this experiment. The average
arithmetic proficiency on the shared-control system
exceeded the average arithmetic proficiency on the
direct-control system by 9%. Additionally, the av-
erage number of arithmetic problems attempted per
minute increased from 7.3 problems per minute when
participants used the direct-control system to 12.0
problems per minutes when participants used the
shared-control system. That represents an increase
of about 65%.

Subjective Rating Each participant is asked to
tell which system was better. The judgement cri-
teria of what is better should be based on a general
perception of how the participant felt they did on
each scheme. In the experiments, the participants
of the experiment unanimously have indicated that
the shared-control system is better than the manual-

control system for the task tested in the experiment.

6 Summary and Future Work

We have presented a framework for evaluating the
expected efficiency of an interaction scheme in terms
of its sensitivity to neglect and complexity. We then
performed a case study that evaluated the observed
interaction efficiency of a shared control teleopera-
tion algorithm and compared this efficiency to the
efficiency of direct teleoperation. We showed that,
for the level of complexity used in the experiments,
the shared control scheme was more tolerant to ne-
glect. These results correlated well with measures of
human workload and ease of use, suggesting that the
framework is valid in some cases.

Future work includes further validation of the frame-
work by conducting experiments that control both
neglect level as well as complexity level. Using these
experiments, we can characterize the expected per-
formance of various interaction schemes, and identify
characteristics of efficient interaction. These exper-
iments will allow us to identify design principles to
create efficient teams of robots that interact with a
human. :
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