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Genetic Algorithms in Repeated Matrix Games: The
Effects of Algorithmic Modifications and Human

Input with Various Associates
Yomna M. Hassan and Jacob W. Crandall

Abstract—In many real-world systems, multiple independent
entities (or agents) repeatedly interact. Such repeated interac-
tions, in which agents may or may not share the same preferences
over outcomes, provide opportunities for the agents to adapt to
each other to become more successful. Successful agents must be
able to reason and learn given the dynamic behavior of others.
This is challenging for artificial agents since the non-stationarity
of the environment does not lend itself well to straight-forward
application of traditional machine learning methods. In this
paper, we study the performance of genetic algorithms (GAs)
in repeated matrix games (RMGs) played against other learning
agents. In so doing, we consider how particular variations in
the GA affect its performance. Our results show the potential of
using GAs to learn and adapt in RMGs, and highlight important
characteristics of successful GAs in these games. However, the
GAs we consider do not always perform effectively in RMGs.
Thus, we also discuss and analyze how human input could
potentially be used to improve their performance in RMGs.

I. INTRODUCTION

In social networks, new-agent power systems, online adver-
tising, and many other applications, computers (agents) must
repeatedly interact with other intelligent computing resources
that may not have the same goals. Given these repeated
interactions, each artificial agent has the opportunity (and
incentive) to learn and adapt to the behavior of other agents in
order to maximize its own payoffs. Given the non-stationarity
of the environment, straight-forward applications of traditional
machine learning techniques are not justified.

While many different kinds of multi-agent learning algo-
rithms have been proposed for such situations [1], [2], [3],
this paper investigates the effectiveness of genetic algorithms
(GAs) for learning in the presence of other learners. GAs have
become a common optimization search technique, especially
for large, but stationary, search spaces [4]. For problems with
high computational requirements, methods have also been
developed to use GAs in a distributed fashion [5], [6]. In such
approaches, multiple agents cooperate to solve a problem in
which all agents have the same goal. However, other multi-
agent systems in which GAs could be applied require agents to
learn successful behavior when other agents do not necessarily
share the same goals and preferences. In such circumstances,
a GA must be able to learn in the presence of other learning
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agents, including having the ability to quickly adapt to sudden
changes in associates’ behaviors.

The behavior and effectiveness of GAs in this latter domain
are less studied. Previous work has developed GAs for dy-
namic environments (e.g., [7]). However, these methods either
do not consider the existence of other heterogeneous learning
entities in the system, or they are designed to learn only under
certain identified constraints [8], [9].

In this paper, we analyze the behavior and performance
of GAs in repeated matrix games (RMGs) played against
other learning algorithms. In so doing, we evaluate how
algorithmic variations affect the agent’s learning rate and long-
term proficiency. We also discuss and evaluate the potential of
interactive genetic algorithms (IGAs), or GAs that leverage
human input, to enhance the performance of GAs in RMGs.

The paper proceeds as follows. In Section II, we provide
background information and review previous related work. We
then define a GA for RMGs and propose four variations on
this basic algorithm in Section III. In Section IV, we evaluate
these algorithms in a set of 2-player RMGs played against
several different learning algorithms. While these algorithms
perform well in many circumstances, they have a number of
shortcomings. Thus, in Section V, we discuss and evaluate
how human input can potentially be used to enhance a GA’s
performance in RMGs. Finally, we discuss conclusions and
future work in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we first define RMGs and introduce neces-
sary notation. We then review related work on using genetic
algorithms in dynamic environments and, more specifically, in
RMGs.

A. Repeated Matrix Games

A matrix game M , also called a normal-form game, is
defined as a tuple M = (I, A,R), where I is the set of n
players (or agents), A = A1 ⇥ A2 ⇥ · · · ⇥ An is the
set of joint actions (where Ai is the set of actions available
to agent i 2 I), and R : A ! Rn is a function that specifies
a reward or payoff to each agent given the joint action. For
simplicity, we assume that m = |Ai| = |Aj | for all i, j 2 I .
In a matrix game, each agent i 2 I simultaneously chooses an
action ai 2 Ai without knowing the actions selected by the
other agents. The resulting joint action a = (a1, a2, . . . , an)
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produces a payoff vector r = (r1, r2, . . . , rn), where ri is the
payoff to agent i.

A repeated matrix game (RMG) is a matrix game that is
played repeatedly by the same set of agents. It consists of a
set of episodes, or time steps, where an episode is a single
play (joint action) of the game. Let ri(a) denote the payoff to
player i when the joint action a 2 A is played. Additionally,
let ati be the joint action played by agent i in time step t, and
let rti denote the payoff obtained by player i in time step t. We
assume that an agent observes the actions taken by the other
agents, but not their rewards. That is, once the joint action
at = (at1, a

t
2, . . . , a

t
n) is played, agent i observes atj for all

j 2 I , but not rtj .
A strategy of player i, denoted ⇡i, is a probability distri-

bution over the action set Ai for each possible joint action
history ht. Thus, the task of a learning algorithm in a RMG
is to learn to a strategy ⇡i such that its average per-episode
payoff over all time, denoted r̄i, is maximized. Formally, r̄i
is given by

r̄i =
1

T

TX

t=1

rti . (1)

Here, 1  T  1 is the number of episodes in the
game. Since rti is dependent on the actions of all agents
and since other agents are also seeking to learn a strategy
that will maximize their future rewards, a successful learning
algorithm must consider not only the impact of its actions on
its immediate rewards, but also how its strategy will influence
the behavior of other agents in future episodes.

B. GAs in Repeated Matrix Games
Many machine learning algorithms have been designed for

RMGs, particularly over the last several decades. These algo-
rithms include reinforcement learning algorithms [10], [11],
[12], [13], [3], belief-based and opponent modeling algorithms
[14], [15], and expert algorithms [16], [17], [18]. However,
GAs have not been as thoroughly evaluated in the context of
RMGs played against other learning algorithms.

GAs are adaptive search algorithms that can be used for
many purposes. They are based upon the principles of evolu-
tion and natural selection. GAs are adept at searching large,
non-linear search spaces where it is not possible to solve
the problem using traditional iterative search techniques [19].
GAs possess the ability to efficiently determine near optimal
solutions in reasonable time frames by simulating biological
evolution. Specifically, GAs simulate selection, mutation, and
crossover.

A number of researchers have addressed using GAs in dy-
namic environments. However, these algorithms either (1) re-
quire heavy training, (2) are limited to environments in which
all agents share the same goals [7], or (3) have been shown
to work only under certain constraints [8]. Despite these
limitations, this body of literature has identified techniques
that have high potential for RMGs. In particular, this work
shows that GAs for dynamic environments should increase the
diversity within the population when change is detected within
the environment. We consider this technique in the context of
RMGs in this paper.

Despite the challenges of utilizing GAs in dynamic en-
vironments, GAs have been studied in the context of the
repeated Prisoner’s Dilemma, a well-studied RMG. For ex-
ample, Axelrod used GAs in order to identify evolutionarily
robust strategies in the prisoner’s dilemma [20]. Additionally,
in work more similar in nature to ours, Buntai studied the
ability of a GA to learn a strategy in the repeated Prisoners’
Dilemma played against static strategies [9]. Buntai’s work
provides initial analysis of how GAs may perform in RMGs.
However, in this paper, we consider the ability of GAs to learn
a successful strategy in RMGs played against associates that
also learn (i.e., the environment is dynamic).

GAs have also been used in a simple formulation of a
buyer-seller dilemma [21]. In this work, each chromosome in
the GA’s population implemented a particular mixed strategy.
The performance of this GA was then compared to various
reinforcement learning algorithms. The reinforcement learning
algorithms were shown to adapt faster to feedback from the
environment than the GA. However, the GA was shown to
exhibit less variation, and, hence, better convergence proper-
ties. The authors of this work also raised questions of how
human input could be used to enhance the performance of
GAs [21]. We address this consideration in the context of
RMGs in Section V.

III. GENETIC ALGORITHMS

In this section, we describe a set of GAs for RMGs. First,
we describe the structure of a basic GA. We then propose
four variations. In Section IV, we evaluate these algorithms in
RMGs played against several different learning algorithms.

A. Basic Algorithm
In a typical GA, a population or pool of chromosomes

is initially generated, usually randomly. The fitness of each
chromosome is then computed, in our case by having each
chromosome play the game for a certain number of episodes
of the RMG. Based on these fitnesses, the chromosome pop-
ulation is then adapted via selection, mutation, and crossover.
This new population is then evaluated, and the process repeats
until the game ends. To fully specify this algorithm, we specify
the chromosome structure implemented by our GA as well as
parameters related to the population update.

1) Chromosome Structure: Central to a genetic algorithm’s
success is the structure of its chromosomes. In our implemen-
tation, each chromosome encodes a particular strategy. Here,
a strategy defines the agent’s action given the last ! joint
actions taken by the agents in the game. Given an n-player,
m-action RMG, there are (nm)

! possible joint-action histories
of length !. Thus, each chromosome consists of (nm)

! bits of
information (or numbers), each of which specifies the agent’s
action for a particular joint-action history.

Let ht = (at�!, . . . ,at�1
) denote the last ! joint actions

played before time t, and let hi
t be the joint action at�i

converted to a base 10 number. For example, in a 2-agent,
2-action game, the joint action (0, 1) can be represented as
the base 10 number 2, the joint action (1, 0) can be converted
to the base 10 number 3, and (1, 1) can be converted to the
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1 0 1 1 0 0 .......

The action encoded for history 2 (based 10), which for 

ω=3 is the history (CC, CC, DC), where C is encoded as 

0 and D is encoded as 1.

Position index 

(base 10) 0  1   2    3    4     5      6 ....

Length depends 

on history 

length ω  

Fig. 1. Example chromosome used in our implementation.

base 10 number 4. Then, to determine the action specified by a
chromosome given the joint-action history ht, we simply look
up the number in position Ap in the chromosome, which is
given by:

Ap =

!X

i=1

m2(i�1) ⇥ base10(at�i
), (2)

where m is the number of actions available to each agent,
and base10(a) is the base 10 number represented by the
joint action a. Small values of ! make the chromosome
smaller (smaller search space), but limit the agent’s modeling
capability. In this paper, we use ! = 3 as has been done in
past work [22].

For example, consider Figure 1, which shows the first
six bits of a chromosome for a 2-player, 2-action prisoners’
dilemma. To determine the action encoded by this chromo-
some for the joint-action history ht = (CC,CC,DC), we
encode each joint action of ht in binary (00, 00, 10), and use
Eq. (2) to determine that Ap = 2. The number in position
Ap = 2 (the first position is Ap = 0) in the chromosome is 1.
Thus, this chromosome says that, given the joint-action history
(CC,CC,DC), the agent should play action D.

2) Population Update: In our algorithm, we used standard
forms of selection, mutation, and crossover as has been used
in previous research [22], [23]. We use elitism selection in
our algorithm, with elitism rate identified as Pe = 0.3. After
selecting the elite chromosomes, we generate the remainder of
the population through crossover and mutation process. That
is, we set the probability of mutation to be Pm = 0.01 and
the probability of crossover to be Pc = 0.5, with the crossover
point selected randomly.

B. Algorithmic Variations
Branke [7] identified several successful modifications for

GAs in dynamic (but cooperative) environments. Similarly,
we found three variations to have important impact in RMGs:
(1) fitness propagation over generations, (2) stopping condi-
tions, and (3) a dynamic mutation rate. We discuss each in
turn.

1) Fitness Propagation Over Generations: Normally, the
new population of chromosomes is generated based on the
fitness acquired in the latest generation. In RMGs played
with learning associates, this causes the population to be
generated in a myopic manner that can lead local, but not
global, maxima. To avoid this, we can use the fitness of a
chromosome as its average fitness in all generations in which

TABLE I

Change in Fitness Pm Pe

Increased or equal 0.01 0.5
Decreased by < 20% 0.05 0.5
Decreased 20–40% 0.1 0.3
Decreased by > 40% 0.2 0.2

(a) Dynamic mutation and elitism rates

Name Fitness
Prop.

Stopping
Condition

Dyn. muta-
tion rate

Basic
w/ Prop.

p

w/ Stopping
p

Dynamic
p

Dynamic p p
w/ Stopping

(b) Five algorithmic variations

it was present in the population. This average fitness can then
be used to generate the new population.

2) Stopping Condition: A dynamic environment can poten-
tially cause a GA to continually shift its population over time,
sometimes in a myopic manner. This problem can potentially
be mitigated via an appropriate stopping condition. Once a
stopping condition is met, learning ceases; the population re-
mains fixed. We found it useful to stop evolving the population
when the average fitness of the population remained stable for
three straight generations.

3) Dynamic Mutation Rate: In dynamic environments, it
is common to dynamically set the GA’s parameters, such as
the mutation and elitism rates, based on the chromosome’s
performance. If the fitness increases from one generation to
another, we used a smaller mutation rate. If the average fitness
of the population is deteriorating, we increased the mutation
rate in attempt to generate a more fit population. This is similar
to the win-or-learn-fast principle popular in the multi-agent
learning literature [13]. Our GA variants that implemented
dynamic mutation rates used the mutation and elitism rates
specified in Table I(a).

IV. EVALUATION

We evaluated five variations on our GA (Table I(b)) in
RMGs played against other learning algorithms. Each of the
variants incorporated a different combination of the basic
algorithm and modifications discussed in the previous subsec-
tion. In this section, we first describe the experiment used to
evaluate the algorithms, after which we describe and analyze
the results of this experiment.

A. Experimental Setup

We paired each of our algorithms against three earning
algorithms in four different RMGs. We describe these RMGs
and learning algorithms in this subsection.
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TABLE II
MATRIX GAMES CONSIDERED IN THIS PAPER.

a b
A 4, 4 0, 0
B 0, 0 2, 2

(a) Cooperation Game

c d
C 3, 3 0, 5
D 5, 0 1, 1

(b) Prisoners’ Dilemma

a b
A 6, 6 4, 7
B 7, 4 2, 2

(c) Chicken

a b c
A 0, 0 0, 1 1, 0
B 1, 0 0, 0 0, 1
C 0, 1 1, 0 0, 0

(d) Shapley’s Game

1) Set of Games: We evaluated the performance of our GAs
in four different RMGs: the Prisoners’ Dilemma, Cooperation
Game, Chicken, and Shapley’s game. The payoff matrices
representing the score given to the opponents when specific
pairs of actions are performed within these games are shown
in Table II. In each matrix, one player selects the row, while
the other player selects a column. Thus, each cell of the payoff
matrix represents an outcome of a joint action, with the row
player’s payoff specified first, followed by the column player’s
payoff. We selected games with expected various outcomes to
visualize unexpected behaviour from both the GA variations
and their associates in order to be able to generalize our results.

Cooperation Game is a common-interest game in which
both agents always receive the same payoff. The other three
games are games of conflicting interests. The players are
neither in full cooperation nor full competition with each other.
Thus, they must learn a profitable compromise if they are to
achieve high payoffs.

2) Set of Associates: Previous work studying the perfor-
mance of GAs in RMGs has focused on situations in which
associates do not learn, but rather encode static strategies [9].
In this paper, we focus on situations in which associates
also learn. We paired each GA with three different learning
algorithms as opponents: itself (self play), Q-learning [24],
and GIGA-WoLF [25]. These three associates were chosen to
represent different popular genres of learning algorithms the
agent could face, and the performance of these associates have
been studied extensively in previous research [2].

GIGA-WoLF is a gradient ascent learning algorithm that
exhibits the property of no-regret [25]. It adapts its learning
rate according to its perceived success. It is an apt competitor.
However, it often converges to myopic solutions in RMGs due
since it does not form a strategy over past joint actions.

Q-learning is a model-free reinforcement learning algorithm
that has been studied repeatedly in RMGs. Our implementation
of Q-learning has a discount factor of � = 0.95, encodes state
as the last joint action played by the agents, and uses an "-
greedy exploration policy in which " = 1.0

10.0+(t/1000.0) .
Each repeated game consisted of 100,000 episodes. The

GAs divided the game into 100 generations, with each gener-
ation consisting of 1,000 episodes. We ran 20 different trials
for each pairing of algorithms in each game.

B. Results

Figure 2 shows the final distribution of payoffs after 100,000
episodes for all pairings in each of the four matrix games.
We make several observations. First, by and large, all of the
GA variants performed quite well against GIGA-WoLF. For
example, ideal behavior against GIGA-WoLF is to defect in
the Prisoners’ Dilemma (since GIGA-WoLF learns to always
defect), play the (4, 4) solution in the Cooperation Game, and
to play B in Chicken (GIGA-WoLF will then learn to play a).
The GA variants that employ dynamic mutation and elitism
rates (with and without the stopping condition) learned all of
these outcomes.

Second, the GAs scored higher in the Prisoners’ Dilemma
against Q-learning than against GIGA-WoLF, since Q-learning
does not always learn to defect in this game. Nevertheless,
our GAs’ performance in this game did not reach mutual
cooperation, which would have resulted in a payoff of 3, which
is possible against this Q-learning algorithm. However, our
GAs’ did not perform as well in the Cooperation Game or in
Chicken against Q-learning. There is no clear trend indicating
which GA variant is best against Q-learning.

In self play, the GA variant employing a dynamic mutation
rate with a stopping condition often performed the best, though
the difference was not always statistically signficant. This
variant was able to achieve average payoffs around 2.25 in
the Prisoners’ Dilemma, compared favorably with the other
GA variants in both Chicken and the Cooperation Game, and
obtained an average payoff of about 0.4 (better than random) in
Shapley’s Game. While adequate, these performance levels are
below those of the Nash bargaining solution in each game [26].
Since a successful learning algorithm should be able to obtain
the value of the Nash bargaining solution in self play [3], these
results show that the learning behavior of each of these GAs
is not ideal.

Figure 3 compares the five GA variants averaged over all
four games and all three associates with respect to the average
difference in final payoffs and average standard deviation (per
game and associate). These results show that the Dyn-Stop
performed statistically better than Basic and the GA with
Propagation (p < 0.001). Additionally, the dynamic GAs had
the lowest standard deviation, statistically lower than the GA
with a stopping condition (p = 0.002).

Overall, a GA employing a dynamic mutation rate and a
stopping condition appears to perform the best overall in these
RMGs against these opponents. However, this GA variant did
not always perform as well as possible. This points to the
need to enhance the GA learning process for RMGs. In the
remainder of this paper, we focus on the potential of using
human input to enhance this learning process.

V. ADDING HUMAN INPUT

Given the potential and shortcoming of GAs in RMGs, we
consider in the remainder of this paper how human input could
potentially be obtained and used to increase the performance of
GAs. Specifically, we discuss how a few intermittent demon-
strations of behavior by a human can be used to potentially
improve the performance of GAs.
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Fig. 2. Comparison of various GAs in the four games against each associate.
Error bars show a 95% confidence interval on the mean.

A. Background

Previous work has investigated how human input can be
used to enhance the performance of GAs. Human input can
enhance the performance of GAs in various ways. The most
common method is to use human input to help evaluate the
fitness of chromosomes in the population. Applications of
such methods include domains where it is hard or impossible
to design an effective fitness function, including evaluating
how images, music, and artistic designs fit a user’s aesthetic
preferences. This can be done by either having the human
rank available solutions [27] or directly assigning the fitness
function value to the available policies in the population.
Human input has also been used in the mutation stage, where
the human first selects the best policy from his or her point
of view, and suggests a mutation operation to enhance its
performance [28]. Finally, human input has also been used
to set the parameters of a GA at the beginning of a board
game, including the number of generations and the mutation
rate [29].
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Fig. 3. Comparison of the (a) difference in mean and (2) standard deviation
over all games and associates.

Evaluate the Fitness for Each Chromosome

Generate Population as 
in Chosen Base-Line GA

Human input is not available

For each chromosome:
1-Calculate the Entropy for Each History 

Step.
2-Select the R Histories with the Highest 

Entropies.
3-Receive Human Demonstrations for 

Selected Histories.

Human input is available

Mutate Each Chromosome to conform to the 
suggested actions

Fig. 4. Overview of our interactive GA (IGA) for adapting the population
using a limited amount of human input.

B. Algorithm

In this paper, we focus on using human input to improve
GAs in RMGs using the interactive GA (IGA) overviewed in
Figure 4. In this algorithm, the human provides a few select
demonstrations of successful behavior to the agent every few
generations. Specifically, the human provides demonstrations
of successful behavior for a few carefully selected histories of
play. These demonstrations are used to generate the population
of chromosomes in the subsequent generation.

1) Selecting Human Input: In our algorithm, the fitness
of each chromosome in the population is evaluated in a
generation as before. If the human is not available, the normal
sequence of selection, crossover, and mutation is used to
evolve the population for the next generation. However, if the
human is available for input after the chromosomes’ fitnesses
are evaluated, demonstrations of human input are used to
evolve the population.

Given that humans will typically only be able to provide
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a limited amount of input, the demonstrations sought by the
algorithm from the human should be chosen carefully. Our
algorithm does this by selecting R joint-action histories, and
asking the human to provide demonstrations of successful
behavior for each of these R histories. To select which
demonstrations will be most useful, our algorithm computes
the indecisiveness of the population for each joint-action
history. Our metric of indecisiveness is a form of entropy,
with chromosomes having higher fitness given more weight
in this calculation.

Formally, we compute the entropy of action history h,
denoted Eh, as follows:

Eh =

X

a2Ai

� log(P a
h )⇥ P a

h . (3)

Here, P a
h is the probability that the population will choose

action a given the joint-action history h. Let C be the set of
chromosomes in the population, and let Ca

h ✓ C be the set of
chromosomes that choose action a given the history h. Also,
let fc be the fitness of chromosome c, and let FT =

P
c2C fc

be the total fitness of the chromosomes in the population.
Then, P a

h is estimated by:

P a
h =

X

c2Ca
h

✓
fc
FT

◆2

(4)

Once Eh is computed for each h, our algorithm selects the
R histories with the highest entropy Eh. The system then asks
the human to determine which action should be played given
each of these R histories. We refer to these demonstrations as
the suggested actions.

2) Mutating Chromosomes Given Human Input: Given the
suggested actions for the selected joint-action histories, our
algorithm generates a new population of chromosomes. This
population is created by mutating each chromosome in the
population to conform to the suggested actions, and then
adding the resulting chromosome to the new population.
Chromosomes are then ranked in the population according to
the percentage of bits that match the human input.

C. Results
We now evaluate the potential effectiveness of the IGA

described in the previous subsection. These results are in-
tended to identify potential improvements that can be obtained
by using human demonstrations. Thus, rather than use actual
human input, we simulated human demonstrations in order to
more easily evaluate the potential effects of human input on
the performance of GAs in RMGs. We leave implementation
with actual people to future work.

In analyzing the impact of human input on the effectiveness
of GAs in RMGs, we wish to learn two things. First, we wish
to determine the extent that human input, when used in the
prescribed manner, can improve the effectiveness of the GA in
RMGs played against other learning algorithms. Second, we
wish to determine how less effective (or uninformed) demon-
strations affect the algorithm’s performance. While humans
may sometimes be well-informed about successful strategies,
they may not be (for many potential reasons).

TABLE III
INFORMED AND UNINFORMED DEMONSTRATION STRATEGIES FOR EACH

GAME.

Game Human Input
Informed Uninformed

Prisoner’s Dilemma Tit-for-Tat Inverse Tit-For-Tat
Cooperation Game Play A or a Play B or b

Chicken Play B or b Play A or a

Shapley’s Game Play randomly Play a pure strategy

To pursue these two research agendas, we simulated two
forms of human demonstrations. First, we simulated informed
humans who demonstrate actions that tend to lead to high
payoffs. Second, we simulated uninformed human demon-
strations who demonstrate actions that tend to lead to low
payoffs. Both of these simulations were carried out via hard-
coded strategies, the strategy of choice at a certain point
of time is played versus the opponent. These strategies for
the four matrix games described previously are summarized
in Table III. Informed strategies included Tit-for-tat in the
Prisoners’ Dilemma, the action corresponding to the pareto
efficient solution in the Cooperation Game, the bully strategy
in Chicken, and the maximin strategy in Shapley’s Game.
Uninformed strategies included the inverse of Tit-for-Tat in
the Prisoners’ Dilemma, the action with less potential in
both Chicken and the Cooperation Game, and a constant
deterministic strategy in Shapley’s Game.

We paired the IGA with both informed (simulated) human
input and uninformed (simulated) human input against GIGA-
WoLF, Q-learning, and itself in the four games used in the
previous section. Since the GA that used a dynamic mutation
rate and a stopping condition performed the best in the
previous section, we use it as a benchmark to evaluate the
performance of our IGA in this section.

In each case, the IGA received four demonstrations (i.e.,
R = 4) from the human every fourth generations. Given that
there were 100 total generations in each trial, this resulted
in 100 demonstrations throughout a repeated game. Given a
game with 100,000 moves, we deem this to be a relatively
small number of demonstrations.

1) Potential of Human Input: Figure 5 compares the per-
formance of four GAs in consideration in each of the games
against each of the opponents. We make several observations
about these results, beginning with a discussion of the impact
of informed human demonstrations on the algorithms’ perfor-
mance. First, informed human input had little impact on the
performance of the GA against GIGA-WoLF. As we observed
in the previous section, GA is able to learn an effective strategy
against GIGA-WoLF in each game.

Second, Figure 5 shows that a limited number of informed
human demonstrations could have a substantial (and statisti-
cally significant p < 0.001) impact on the performance of
our GA against Q-learning in the Prisoners’ Dilemma. While
the GA without human input received an average reward of
about 1.5, IGA with informed human input typically achieved
a payoff near 2.0. A similar trend is seen in the case of
Chicken. These result demonstrates the important impact that
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(b) Cooperation Game
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(c) Chicken

GIGA−WoLF Q−learning Self Play
0

0.1

0.2

0.3

0.4

0.5

0.6

Associate

Av
er

ag
e 

Fi
na

l P
ay

of
f

Potential Impact of Human Input −− Shapleys Game

 

 
Dynamic w/ Stopping
IGA (informed)
IGA (uninformed)

(d) Shapley’s Game

Fig. 5. Comparison of IGA and GA in each game against each associate.
Error bars show a 95% confidence interval on the mean.

key interactions between a GA and a person can have on the
algorithm’s performance.

However, informed human demonstrations did not signifi-
cantly increase the performance of a GA in self play. How-
ever, in the case of Shapley’s Game and Cooperation Game,
informed human input did served to reduce the variance in the
algorithm’s performance.

In summary, a limited number of carefully chosen human
demonstrations can, in some circumstances, substantially boost
a GA’s performance in a RMG played against a learning
opponent.

2) Impact of Demonstration Quality: We next discuss the
impact of uninformed human input on the performance of
GAs in RMGs played against other learning algorithms. In
general, we would expect that uninformed human demonstra-
tions would serve to decrease the effectiveness of the GA.
Indeed, Figure 5 does show a decrease in performance in
some circumstances. However, we note that, in many other
circumstances, the GA was still able to maintain similar
performance levels to those obtained by our GA in the absence
of human input.
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Fig. 6. Example trial runs of (a) IGA vs. GIGA-WoLF in the Cooperation
Game and (b) IGA vs. Q-learning in the Prisoners’ Dilemma.

Two sample demonstrations of the impact of uninformed
(or unacceptable) demonstrations on the IGA’s performance
over time are shown in Figure 6. In these figures, IGA with
informed human input is compared to IGA with uninformed
human input. Figure 6a shows the performance of IGA over
time in the Cooperation Game against GIGA-WoLF. While
informed human input leads to fast convergence to the pareto
efficient solution, uninformed demonstrations lead to much
slower convergence. However, eventually the algorithm is able
to overcome the negative impact of these uninformed demon-
strations so that it too reaches the pareto efficient solution.
We attribute these results to the fact that the IGA, although
relies initially on human feedback, ignores chromosomes that
were heavily supported by an uninformed human over its
learning course with the opponent’s stability. We consider this
an important achievement.

Figure 6b shows runs of IGA against Q-learning in the
Prisoners’ Dilemma. The figure shows that informed demon-
strations serve to boost the performance of GA throughout
the repeated game, resulting in superior performance over the
same algorithm given uninformed demonstrations. This shows
both the potential and importance of having users that are able
to provide informed input to a GA in RMGs played against
other learning algorithms.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we evaluated the ability of multiple variations
of genetic algorithms (GAs) to learn in repeated matrix games
(RMGs) played against other learning algorithms. We also
explored the potential value of using a limited amount of
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human input to enhance the performance of GAs in such en-
vironments. Our results show that GAs often learn successful
strategies in RMGs played against other learning algorithms,
particular against learning algorithms with strong convergence
properties. We also observed that using a dynamic mutation
rate serves to increase the performance of the GA in RMGs.

However, GAs do not always learn successful strategies in
RMGs. One potential solution to overcome these deficiencies
is to leverage human input. Our simulations showed that a
small number of demonstrations of successful behavior by a
human could substantially improve the performance of GAs
in RMGs played against other learning algorithms in some
circumstances. Uninformed human input on the other hand
sometimes decreases the performance of a GA, though the
IGA we considered was often able to mitigate these negative
effects.

During the course of this research, we discovered a num-
ber of areas that deserve further investigation. These areas
include (1) testing the effectiveness of interactive GAs in
more complex environments and against more opponents,
(2) developing techniques to better overcome the negative
effects of uninformed human input, (3) studying the use of
actual human interactions with a GA that is playing a RMG,
and (4) the potential of using human interactions with other
learning algorithms.
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