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ABSTRACT
Despite high research emphasis over the last few decades,
newly created multi-agent learning (MAL) algorithms con-
tinue to have one or more fatal weaknesses. These weak-
nesses include slow learning and convergence rates, failure to
learn non-myopic solutions, and inability to learn effectively
in domains with many actions, states, and associates. The
continued presence of these prohibitive weaknesses in newly
developed MAL algorithms suggests a need to identify and
develop fundamentally different approaches to MAL. One
possibility is to employ humans as teachers of these artifi-
cial learners. As a step toward determining the usefulness
of this approach, we explore “learning by demonstration”
(LbD) in repeated stochastic games, wherein the learning
algorithm utilizes intermittent demonstrations from the hu-
man teacher to derive a behavioral policy. To do so, we
compare and contrast two LbD algorithms in a rich formu-
lation of the iterated prisoners’ dilemma.

Categories and Subject Descriptors
H.4 [Information Systems]: Miscellaneous

General Terms
Algorithms, performance

Keywords
Multi-agent learning, game theory, learning by demonstra-
tion

1. INTRODUCTION
Due to its potential applicability to many real-world sys-

tems, multi-agent learning (MAL) in repeated games has
become a popular research topic [19]. The goal of much of
this research has been to develop algorithms that maximize
an agent’s payoffs over time. Unfortunately, current MAL
algorithms still cannot successfully solve many of the real-
world challenges that this research has targeted due to one or
more debilitating weaknesses. First, most MAL algorithms
learn too slowly to be useful in real-time systems. These al-
gorithms often require thousands of iterations to converge,
even in two-agent, two-action games. Second, most MAL
algorithms do not “scale-up” to games with many agents, ac-
tions, and states [10]. Lastly, most MAL algorithms perform
effectively in a restricted class of repeated games against a
restricted set of associates, but often do not perform well
when these limiting assumptions are not met.

While much work has attempted to overcome these weak-
nesses, we believe that repeated failures highlight the need
for a new approach to MAL. Like a child learning a complex
skill, agents learning in repeated games require a (potentially
flawed) tutor to help them overcome the complexities of
these dynamic environments (Figure 1). People with vested
interest in the agent’s success should potentially supply in-
termittent reward reinforcement, demonstrations of success-
ful behavior, and intuition into what might be successful [5].

In this paper, we begin to explore how intermittent inter-
actions between a human teacher and an artificial learning
agent will affect the outcome of repeated stochastic games
[18]. In particular, we focus on learning by demonstration
(LbD) in repeated stochastic games, wherein the human
teacher intermittently demonstrates the actions that he or
she believes the agent should perform. The agent then uses
these demonstrations to improve its behavior over time.

LbD has been studied and applied to many problems, par-
ticularly in the robotics domain [1]. Most of this research has
pertained to situations in which the human teacher knows
successful behavior. However, in repeated games, where in-
formation about learning associates, their tendencies, be-
haviors, and goals, and even the game itself is lacking, the
teacher may or may not know how the agent should be-
have to be successful. Since the teacher will also likely learn
throughout the repeated game, demonstrations provided by
the human are likely to be noisy and to change with time.

As a step toward determining the potential of LbD in re-
peated stochastic games, we focus on two related sets of
questions. First, what types of LbD algorithms will be
successful in repeated stochastic games? These algorithms
must quickly learn non-myopic solutions in games with many
states and agents. Second, how good do demonstrations
need to be for these algorithms to learn successfully? Can
the algorithms utilize demonstrations from unformed novices,
or do they require more-informed demonstrations? Can LbD
algorithms learn effectively when human teachers are ini-
tially less-informed, but become more-informed over time?

In this paper, we begin to analyze these questions using
a rich formulation of the iterated prisoners’ dilemma. In
particular, we compare and contrast two LbD algorithms in
this game given different qualities of demonstrations. We
begin by describing the prisoners’ dilemma game.

2. MULTI-STAGE PRISONERS’ DILEMMA
We consider the problem of learning in the repeated stochas-

tic game shown in Figure 2(a) [4]. In this game, two players
(represented by the circle and the square in the figure) be-
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Figure 1: This paper discusses the situation in which a human teacher interacts with a learning agent in
a repeated stochastic game. The grey rectangle represents the components of a traditional repeated game.
The human teacher uses its knowledge, intuition, and external knowledge to teach the agent how to play the
repeated game.
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Figure 2: (a) A multi-stage prisoner’s dilemma
game. Each agent (blue circle and red square) must
cross the middle barrier via one of four gates to
reach the other agent’s starting position in as few
steps as possible. (b) High-level payoff matrix for
the MSPD.

gin each round in opposite corners of the world, and seek to
move across the world through one of four (initially open)
gates to the other player’s start position in as few moves as
possible. The physics of the game are as follows:

1. From each cell, each player can attempt to move up,
down, left, or right. Moves into walls or closed gates
result in no change to the player’s position. The play-
ers move simultaneously; moves are only effectuated
after both players have chosen an action.

2. If both players attempt to move through gate 1 at the
same time, gates 1 and 2 close and both players are
forced to go through gate 3.

3. If player i attempt to enter gate 1 on a move that
player j 6= i does not, then player i is allowed passage
through gate 1, and gates 1, 2, and 3 close so that
player j can only reach its goal through gate 4.

4. If either player moves through gates 2, 3, or 4, then
gate 1 closes for the remainder of the round.

5. Each player’s score for a round is determined by the
number of moves it takes for it to reach its goal. A
round is automatically terminated after 40 moves if
one of the players has not yet reached its goal.

6. After both players reach their respective goals, the
gates are reset (to open) and each of the players is
returned to its start position.

7. We assume that the locations of both agents and the
current status of the four gates are known to both play-
ers at all times.

When a player attempts to move through gate 1, it is
said to have defected. Otherwise, it is said to have cooper-
ated. Viewed in this way, the high-level game is the pris-
oner’s dilemma matrix game shown in Figure 2(b), where
one player selects the row, and the other player selects the
column. Each cell specifies the negative cost, based on the
minimum number of moves its takes to reach the goal, of
the row player (first number) and the column player (second
payoff), respectively. We refer to this game as the multi-step
prisoners’ dilemma (MSPD).

The Nash equilibrium of a single round of the MSPD is for
each agent to defect. However, in the repeated game, there
are an infinite number of Nash equilibria of the repeated
game [8]. Furthermore, the Nash bargaining solution of the
game is for both agents to cooperate. Thus, without knowl-
edge of the behavior of one’s associate, it is unclear how this
game should be played.

Due to the relatively large state-space of this game com-
pared to many commonly studied repeated games in the lit-
erature, artificial learning algorithms without previous knowl-
edge of the dynamics of the game must simultaneously solve
two decision problems. First, the agent must make the
high-level decision of determining which gate it should move
through given the behavior of its associate. This high-level
decision problem is the iterated prisoners’ dilemma game
shown in Figure 2(b) if both agents take a shortest path
through their chosen gate, or the nearest open gate if the
chosen gate closes. Thus, the second decision problem is



the low-level control problem of determining the shortest
path. Since the low-level control problem often takes sev-
eral rounds for an artificial agent to learn, the high-level
game changes over time, thus complicating the game.

Given these challenges, it is interesting to observe the be-
havior of existing artificial learning algorithms in this game.

3. BEHAVIOR OF EXISTING MAL ALGO-
RITHMS IN THE MSPD

Existing MAL algorithms for repeated stochastic games
fall into two categories: followers and leaders [15]. Follower
algorithms typically use only their own payoffs to attempt to
learn a best response to associates’ strategies, while leader
algorithms consider the payoffs of both players and attempt
to coax or coerce associates to follow specific solutions. In
this section, we evaluate the strengths and weaknesses of
these two approaches to MAL in the MSPD using two rep-
resentative algorithms. In subsequent sections, we begin to
evaluate the extent to which LbD can be used to improve
upon these algorithms.

3.1 Follower Algorithms in the MSPD
Most reinforcement learning [13] algorithms for stochastic

games are follower algorithms. These algorithms experimen-
tally acquire knowledge of their environment, and use this
knowledge to derive a strategy π given the current state of
the world (s). Example algorithms include Q-learning [20],
Minimax-Q [14], Nash-Q [11], Correlated Q-learning [9], and
WoLF-PHC [3].

For simplicity, we consider a more basic follower algo-
rithm to represent the learning capabilities of followers in
the MSPD. This algorithm uses Monte Carlo reinforcement
learning (MCRL) to learn V (s, a), the value of taking ac-
tion a from state s. The algorithm then acts according to
the following strategy rule:

a←


arg maxa∈A(s) V (s, a) with prob. 1− ε
random otherwise

(1)

where A(s) is the set of available actions from state s, and
ε ∈ [0, 1] is agent’s exploration rate. For simplicity, we use
ε = 0.1 throughout this paper.

MCRL estimates V (s, a) as the average reward it has re-
ceived when it has taken a from state s in the past. Formally,
let R(s, a) be the set of rewards obtained by the agent for
taking action a from state s. Then,

V (s, a) =
1

|R(s, a)|
X

r∈R(s,a)

r (2)

where |R(s, a)| denotes the size of the set R(s, a).
In repeated stochastic games, it is unclear what the values

in R(s, a) represent. In our implementation of MCRL, each
reward r ∈ R(s, a) is based on the number of moves taken by
the agent in the remainder of the current round (after action
a was taken from state s), plus the number of moves taken
by the agent in the subsequent round. This representation
allows the agent to determine how its actions in the current
round affects it payoffs in the next round.

In order to learn more quickly, the MCRL algorithm we
consider in this paper uses k-nearest neighbor function ap-
proximation (k = 20) to determine V (s, a). State and dis-
tance metrics used by the algorithm are given in the Ap-
pendix.
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Figure 3: Average number of steps taken by MCRL
(with and without action reduction) and SPaM in
the MSPD in self play. Displayed values are a
sliding-window average from 25 trials.

Figure 3 plots the average performance of two versions of
MCRL in the MSPD when it associates with a copy of it-
self (self play). The first version of MCRL, labeled MCRL
w/o action reduction, selects its actions from among the four
compass directions. Since MCRL must play randomly un-
til it stumbles upon its goal, it learns quite slowly in this
game since random behavior is unlikely to take it too its
goal within 40 moves (when the round is automatically ter-
minated). Thus, MCRL without action reduction has such
a hard time solving the low-level control problem, its per-
formance is worse than mutual defection, in which each
agent must move 25 steps to get to its goal. Rather the
MCRL agents typically learned to alternate between going
through gate 1 (10 steps) and playing randomly while the
other player goes through gate 1 (40 steps). Continued ran-
dom exploration (ε = 0.1) keeps MCRL’s average number
of steps higher than 25.

The second version of MCRL shown in Figure 3, labeled
MCRL w/ action reduction, applies an action-reduction tech-
nique to reduce the number of actions the agent needs to
consider taking. Such techniques, which require knowledge
about the transition characteristics of the game, eliminate
actions that are unlikely to move the agent closer to an open
gate or its goal. In this way, the low-level control problem
is learned more quickly, which allows MCRL to focus on
the high-level decision problem of determining which gate it
should move through. As such, Figure 3 shows that MCRL
w/ action reduction performs much better than MCRL w/o
action reduction, though it still learns the myopic solution of
mutual defection in self play. Ironically, continued random
exploration causes its average number of moves per round
to be little less than mutual-defection.

Thus, given domain-specific knowledge, action-reduction
algorithms can be used to help solve the low-level control
problem. However, even given such assistance, follower al-
gorithms such as MCRL still tend to learn myopic, less suc-
cessful solutions in the MSPD in self play.

3.2 Leaders Algorithms in the MSPD
So-called leader algorithms [16] have been devised to coax

follower algorithm to learn less-myopic strategies. Leader



algorithms for repeated games include the famous tit-for-tat
strategy for the prisoners’ dilemma [2], and the Bully strat-
egy for the chicken matrix game [15]. While most leader al-
gorithms have been developed for matrix games, some leader
algorithms exist for repeated stochastic games [6, 4].

In this paper, we represent the performance leader algo-
rithms in the MSPD with SPaM [4], which learns to cooper-
ate in self play in the MSPD. As such it outperforms MCRL
in self play (Figure 3). SPaM computes both a follower util-
ity function (such as MCRL) and a “social” utility function.
The social utility function assigns high utility to actions that
give its associate a high payoff for doing the “right” thing or
give its associate a low payoff for doing the “wrong” thing.
Additionally, the social utility function gives low utility to
actions that either give its associate a high payoff for doing
the “wrong” thing or give its associate a low payoff for doing
the“right”thing. Once computed, SPaM combines the social
and follower utility functions by computing a set of socially
acceptable actions (based on the social utility function), and
selecting the action from that set with the highest follower
utility. SPaM uses the same action-reduction technique as
MCRL.

In the remainder of this section, we further analyze SPaM
and MCRL in the MSPD to better determine their strengths
and weaknesses.

3.3 Leaders and Followers: Beyond Self Play
We are interested in general-purpose MAL algorithms for

repeated stochastic games that learn quickly and effectively
when associating with a wide range of associates. Effective
MAL algorithms should learn effectively when associating
with leader and follower algorithms, as well as with agents
that do not learn. Thus, we now compare and contrast the
performance of MCRL (with action reduction) and SPaM
when they associate with each other and with Random, a
hand-coded algorithm that randomly selects between gates
1 and 2 in each round, and then moves directly toward that
gate.

Figure 4 shows the asymptotic performance of MCRL and
SPaM when playing the MSPD with these three associates.
The figure shows that SPaM performs effectively when asso-
ciating with both itself and MCRL. In addition to learning
mutual cooperation in self play, it teaches MCRL to coop-
erate, thus resulting in a low average number of steps per
round in both cases. On the other hand, MCRL performs
effectively when it associates with SPaM, but does not learn
effective solutions in self play.

However, MCRL scores better when associating with Ran-
dom than does SPaM. Since Random does not react to its
associates behavior, there is no incentive for an agent to
cooperate with it. Thus, the best thing to do against Ran-
dom is to always defect, which MCRL learns to do (with
some continued exploration since ε = 1). SPaM, on the
other hand, continues to try to teach Random to cooperate,
which causes it to cooperate when it believes that Random
will cooperate, and to defect when it believes that Random
will defect.

These results demonstrate the strengths and weaknesses
of typical leader and follower MAL algorithms. Followers
tend to perform well against teachers and against static asso-
ciates, but they learn (less-effective) myopic solutions when
associating with other followers. Leaders tend to perform
well when associating with followers and (sometimes) other
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Figure 4: Asymptotic number of steps taken by
MCRL and SPaM in the MSPD when associating
with three algorithms. Results are an average of 25
trials. Error bars show a 95% confidence interval on
the mean.

leaders, but they often do not perform well when associating
with algorithms that do not learn.

In addition to not learning effectively against all asso-
ciates, both MCRL and SPaM require domain-specific knowl-
edge to learn effectively in the MSPD. For example, both
algorithms required action reduction to solve the low-level
control problem in order to effectively focus on the high-level
control problem. Furthermore, SPaM requires knowledge of
the payoffs of its associates, as well as high-level knowledge
about what it means to cooperate and defect. These domain-
specific needs limit the generalizability of these learning al-
gorithms.

In the remainder of this paper, we consider the potential
of LbD techniques to achieve general-purpose learning algo-
rithms for repeated stochastic games. In the next section,
we discuss two potential LbD algorithms. We then evalu-
ate the potential of these algorithms to simultaneously and
effectively learn low- and high-level behaviors in self play,
and when associating with followers, leaders, and static al-
gorithms.

4. TWO LBD ALGORITHMS
The two LbD algorithms we describe in this section use

two different genre of machine learning. The first algorithm,
called Imitator, seeks to imitate the teacher’s demonstra-
tions using a simple classification technique. Thus, we an-
ticipate that this algorithm will be effective given (1) ef-
fective demonstrations from a human teacher and (2) good
state features. However, when human input is less-effective,
we anticipate that this algorithm will fail. Thus, the sec-
ond LbD algorithm we consider uses reinforcement learning
to distinguish between effective and ineffective demonstra-
tions. This algorithm, which we call MCRL-LbD, utilizes
the concept of policy reuse [7].

Before describing these algorithms in detail, we note that
neither algorithm uses fundamentally new LbD techniques
to those already proposed in the literature. In fact, both
LbD using reinforcement learning and imitation learning



(1) D = {}

(2) Repeat while game continues

(3) Observe s
(4) demoRound← Schedule()

(5) if (demoRound)
(6) Observe action a and add (s, a) to D

(7) Otherwise

(8) Select action a according to Eq. 3

Table 1: The Imitator algorithm.

have been used repeatedly in the literature [1]. However,
we are not aware of any prior work in which these or similar
LbD algorithms have been analyzed in repeated stochastic
games.

4.1 Imitator
An LbD algorithm utilizes human demonstrations to de-

rive a strategy given the current state s. This strategy, which
we denote π(s), specifies a probability distribution over the
actions a ∈ A(s), where A(s) is the set of available actions
in state s. Let π(s, a) be the probability assigned to action
a by π(s).

To derive a strategy that imitates the previously observed
behavior of the human teacher, Imitator identifies those
demonstrations which were given in similar states to the
current state s. Formally, let d = (ds, da) be a demonstra-
tion from the human teacher, where ds was the state of the
world when the demonstration was observed, and da was the
observed demonstration. Let D be the set of demonstrations
observed up to the current round. Then, given D and the
current state s, Imitator finds the k samples d ∈ D such that
the distance between s and ds, defined by dist(s, ds), is the
smallest. Let N(s) denote this set of samples.

Given the set N(s), Imitator computes π(s, a) for each
a ∈ A(s) as follows:

π(s, a) =

P
d∈N(s) I(a, da) 1

1+dist(s,ds)2P
n∈N(s)

1
1+dist(s,ds)2

, (3)

where I(a, da) is the indicator function such that

I(a, da) =


1, if a = da

0, otherwise
(4)

In words, the probability π(s, a) depends on (1) the number
of samples d ∈ N(s) for which the demonstrated action da

matches a, and (2) the similarity between the sample state
ds and the current state s.

The Imitator algorithm is summarized in Table 1. Line
(4) of the algorithm makes a call to the function Schedule().
This function returns true when the human controls the be-
havior of the agent (i.e., provides a demonstration) in the
current round, or false when the agent must act on its own
(according to Eq. 3).

In addition to this schedule, Imitator also requires defini-
tions of state and the distance metric dist(si, sj). For the
MSPD, we use the same state definition and distance met-
ric used by MCRL, which is given in the Appendix. We
note the obvious reliance of the algorithm on a good set of
state features and a good distance metric. LbD algorithms
with less reliance on these pre-defined specifications are an
important topic left to future work.

(1) D = {}

(2) t = 1

(3) Repeat while the game continues

(4) Repeat while the current round continues

(5) Observe s
(6) demoRound← Schedule()

(7) if (demoRound)
(8) Observe action a and add (s, a) to D

(9) Otherwise

(10) Compute δ(s)
(11) Select action a according to Eq. 5
(12) Update V (s, a) for each (s, a) visited

in round t - 1

(13) t = t + 1

Table 2: The MCRL-LbD algorithm.

4.2 MCRL-LbD
Unlike Imitator, which assumes that human demonstra-

tions are effective, MCRL-LbD makes its own assessment
of the effectiveness of human demonstrations. To do this,
it mimics human demonstrations (like Imitator) in early
rounds of the game, and uses these experiences to estimate
V (s, a) (like MCRL). As it accumulates experiences, it slowly
shifts its strategy to maximize its payoffs using its utility
estimates V (s) rather than following the human teacher’s
behavior. Thus, in later rounds, new demonstrations serve
only to dictate the agent’s exploration of its action space.

Formally, when the human does not control the agent via
demonstrations, MCRL-LbD uses the following strategy rule
to choose its actions:

π(s, a)←

I(a, a∗) with prob. 1− δ(s)
Eq. 3 otherwise

(5)

where a∗ = arg maxb∈A(s) V (s, b) and δ(s) is the probability
that controls whether MCRL-LbD imitates human demon-
strations or follows its utility estimates. As the number of
human demonstrations from states similar to s increases,
the agent places more confidence in its estimates of V (s, a).
This notion is reflected in the following equation, which we
use to compute δ(s) in the MSPD:

δ(s) = 0.02 +

„
1−max

a∈A
φ(s, a)

«3

(6)

Here, φ(s, a) ∈ [0, 1] is known as the support for the pair
(s, a), and is given by

φ(s, a) =
1

k

X
d∈N(s,a)

1

1 + dist(s, ds)2
. (7)

In this latter equation, N(s, a) is the set of k demonstrations
d ∈ D such that da = a and dist(ds, s) is minimized.

The MCRL-LbD algorithm is summarized in Table 2.

5. RESULTS
Recall that the goal of this paper is to begin to address

the potential of LbD in repeated stochastic games by ad-
dressing two related questions. These questions are: What
kinds of LbD algorithms, if any, are likely to be success-
ful in repeated stochastic games? And, how effective do



demonstrations need to be for LbD algorithms to facilitate
successful learning in these games.

In this section, we begin to answer these questions using
simulation studies in which Imitator and MCRL-LbD, given
various degrees of demonstration effectiveness, are paired
with other learning algorithms in the MSPD.

5.1 Experimental Setup
We paired both Imitator and MCRL-LbD with themselves,

MCRL (with action reduction), SPaM, and Random in the
MSPD in 5,000 round games. In these simulations, simu-
lated human demonstrations in the form of hand-coded be-
haviors were provided to each LbD algorithm for between
three and six consecutive rounds. The LbD algorithm then
acted autonomously for 10 to 50 consecutive rounds, af-
ter which simulated demonstrations were again provided.
Thus, on average, demonstrations were provided for five out
of every 30 rounds for the first 4,000 rounds of the game.
However, no demonstrations were provided to the LbD al-
gorithms in the final 1,000 rounds of the game.

In order to evaluate the effect of demonstration quality on
the performance of Imitator and MCRL-LbD, we ran simu-
lations using the following three hand-coded demonstration
behaviors:

1. Tit-for-tat (TFT) – This behavior moves directly to-
ward gate 1 if the associate defected in the previous
round, and gate 2 if the associate cooperated in the
previous round. Given its robustness in the iterated
prisoners’ dilemma [2], TFT was chosen to represent
demonstrations from an informed teacher.

2. Random – At the beginning each round, this behav-
ior randomly selects gate 1 or 2 and then moves di-
rectly toward that gate. These demonstrations repre-
sent demonstrations from less-informed human teach-
ers.

3. Learner – This behavior changes over time in attempt
to mimic a human teacher that begins the game as a
less-informed teacher, but then becomes more-informed
as the number of rounds increases. Specifically, Learner
defects with probability one on its first demonstration,
after which it slowly transitions to Random behavior
over the next 25 rounds of demonstrations. It then
slowly evolves into TFT over its next 65 rounds of
demonstrations.

The two LbD algorithms (Imitator and MCRL-Lbd) com-
bined with the three demonstration behaviors (TFT, Ran-
dom, and Learner) combine to form six different learning
agents. We refer to these learning agents as Imitator-TFT,
Imitator-Random, Imitator-Learner, MCRL-TFT, MCRL-
Random, and MCRL-Learner. We now describe the perfor-
mance of each of these agents in the MSPD.

5.2 Findings
We first describe the behavior of the LbD agents in the

MSPD in self play. We then discuss their performance when
paired with MCRL, SPaM, and Random.

5.2.1 Self play.
The average performances of Imitator and MCRL-LbD

in self play given the various forms of human demonstra-
tions are shown in Figure 5. We make several observations
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Figure 5: Average number of steps required by
(a) Imitator and (b) MCRL-LbD, respectively, in
self play given various demonstration behaviors. Re-
sults are a moving-window average of 10 different
simulations.

about these results. First, while Imitator-TFT’s payoffs are
slightly better (less number of steps) in early rounds than
MCRL-TFT’s, both of these agents learn to cooperate in self
play. These results indicate that of these algorithms are able
to effectively solve the high- and low-level decision problems
simultaneously in stochastic games when both of the agent
receive informed demonstrations from a teacher.

Second, when Imitator-TFT was paired with Imitator-
Random, both agents effectively learn the low-level control
problem. However, their high-level decisions (i.e., the gates
they choose) are essentially random, as Imitator-Random
randomly selects which gate it approaches, and Imitator-
TFT then follows suit in the subsequent round. Thus, the
learned behavior of the agents is as if they both played the
matrix game shown in Figure 2(b) randomly, which results
in an average number of steps per round of about 20.75 for
both agents.

However, in most cases, MCRL-TFT and MCRL-Random
learned to cooperate when paired together in the MSPD,
as mutual cooperation emerged in nine of the ten simula-
tions in which these agents were paired. In these simula-
tions, MCRL-TFT learned to act as a leader to coax MCRL-
Random to cooperate. Thus, after 5,000 rounds, on average,
these agents only required between 16 and 17 moves per



round to reach their goals.
These results suggest that MCRL-LbD is able to act as

both an effective leader and an effective follower, depending
on the demonstrations it receives from the human teacher.
However, at least in self play, these results suggest that Im-
itator is less able to do so.

Third, Figure 5 shows that neither Imitator-Random nor
MCRL-Random are able to consistently learn to cooper-
ate in self play. While Imitator-Random learned to play
randomly in each simulation (in conformance with the pro-
vided demonstrations), MCRL-Random learned mutual de-
fection in five simulations, and mutual cooperation in the
other five simulations. Thus, while MCRL-Random does
not always learn mutual cooperation in self play, it is some-
times able to do so. This suggests that LbD algorithms that
seek to distinguish between informed and less-informed hu-
man demonstrations could potentially learn effectively in re-
peated stochastic games, even when human demonstrations
are imperfect.

Fourth, in self play, Imitator-Learner converged to mu-
tual defection in nine simulations, and mutual cooperation in
one simulation. We initially believed that Imitator-Learner
would converge to mutual cooperation in self play since it
eventually learns to play TFT. However, since TFT defects
against defectors, the behavior produced by mimicking ini-
tial demonstrations caused both agents to continue to de-
fect against each other in most cases. MCRL-Learner was
also unable to consistently learn to cooperate in self play,
though it did better than Imitator-Learner. MCRL-Learner
converged to mutual defection in six simulations, while it
converged to mutual cooperation in the other four simula-
tions.

These latter results suggest that straight-forward imple-
mentations of LbD algorithms may not be suitable for learn-
ing non-myopic solutions in repeated stochastic games when
human teachers learn throughout the course of the repeated
game. However, when demonstrations are informed with re-
spect to low-level control, the evidence of some mutual coop-
eration in MCRL-Learner agents suggests that well-formed
variations of these algorithms could be successful. We leave
further study of this interesting issue to future work.

5.2.2 Associating with other algorithms.
Figure 6 shows the average asymptotic performance of

Imitator and MCRL-LbD given various demonstration be-
haviors against MCRL, SPaM, and Random. Figure 7 also
shows the average percentage of the time the LbD algorithms
cooperated in the final 1,000 rounds when associating with
each agent.

The figures show that none of the LbD agents behaved
ideally against all three associates. However, MCRL-TFT
comes the closest. It successfully learned to cooperate with
SPaM, while learning to defect against Random. Further-
more, it learned mutual cooperation with MCRL in six out
of ten simulations. This latter result falls short of the per-
formance of both Imitator-TFT and Imitator-Learner, which
lead MCRL to always cooperate. However, neither Imitator-
TFT nor Imitator-Learner learn to always defect against
Random.

MCRL-Random and MCRL-Learner also learn to coop-
erate with SPaM and defect against Random, but, they do
not lead MCRL to cooperate as often as does MCRL-TFT.
This suggests that the quality of human demonstrations can

MCRL SPaM Random
15

16

17

18

19

20

21

22

23

24

25

26

Associate

A
ve

ra
ge

 N
um

be
r 

of
 S

te
ps

 

 

MCRL−TFT
MCRL−Random
MCRL−Learner
Imitator−TFT
Imitator−Random
Imitator−Learner

Figure 6: Average number of steps required by
MCRL-LbD and Imitator given various human in-
puts to reach its goal when associating with MCRL,
SPaM, and Random in the last 1,000 rounds. Re-
sults are an average of 10 trials.
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Figure 7: Percent cooperation in the last 1,000
rounds of MCRL-LbD and Imitator given various
human inputs to reach its goal when associating with
MCRL, SPaM, and Random. Results are an average
of 10 trials.

be of great importance to LbD algorithms, though some evi-
dence of mutual cooperation in simulations between MCRL-
Random and MCRL provides hope that future LbD algo-
rithms could learn to be leaders even when human demon-
strations are not.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we described an investigation into the ef-

fectiveness of learning by demonstration (LbD) in repeated
stochastic games. This investigation was designed to de-
termine the potential of general-purpose LbD algorithms
to help agents learn both high- and low-level skills capa-
ble of producing non-myopic equilibria. To do this, we
described and analyzed the performance of two straight-
forward LbD algorithms in a multi-stage iterated prisoners’
dilemma given various forms of simulated human demonstra-
tions. Results showed that LbD does help learning agents
learn non-myopic equilibrium in repeated stochastic games
when human demonstrations are well-informed. On the other
hand, when human demonstrations are less informed, these
agents do not always learn behavior that produces (less-
successful) non-myopic equilibria. However, it appears that
well-formed variations of LbD algorithms that distinguish
between informed and uninformed demonstrations could learn
non-myopic equilibrium.

Results also suggest that new algorithms and techniques
need to be developed that can learn effectively when human
teachers learn to improve their demonstrations throughout
the course of the repeated game. While good initial behavior
can be critical in some repeated games [2], future general-



purpose LbD algorithms for repeated games should be able
to better leverage ever-improving demonstrations in order
to learn increasingly successful behavior.

Another area of future work involves creating an appro-
priate context for the human teacher that allows him or her
to provide more-informed demonstrations. When humans
play iterated prisoners’ dilemma games, their performance
is contingent on many factors [12, 17]. Thus, LbD algorithms
could potentially provide information about the game and
associates that would provide a context that facilitates bet-
ter demonstrations.

A third area of important future work involves develop-
ing algorithms that derive state and distance metrics from
human input. In this paper, we assumed that good state
and distance metrics were known, but this is not likely to be
the case in many real-time systems that can be modeled as
repeated stochastic games. In such situations, in addition
to providing demonstrations of desired behavior, the human
can potentially provide information about the underlying
representations that the algorithm should use [5].
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Appendix: State and Distance Metrics
The state features used by each of the algorithms described
in this paper were:

1. (xi, yi, x−i, y−i) – the x, y coordinates of each player,
respectively

2. (g1, g2, g3, g4) – the boolean status of each gate (0 for
closed, 1 for open)

3. (gt−1
i , gt−1

−i ) – the gate each player passed through in
the previous round

4. (dN, dS, dE, dW) – the agent’s proximity to walls or closed
gates in each of the compass directions, where dj = 0
if there was a wall next to the agent in direction j, and
dj = 1 otherwise

The distance between states v and z, denoted dist(v, z), was
defined as:

dist(v, z) = |v.xi − z.xi|+ |v.yi − z.yi|+
|v.x−i − z.x−i|+ |v.y−i − z.y−i|+
|v.gt−1

i − z.gt−1
i |+ |v.gt−1

−i − z.g
t−1
−i |+

4X
j=1

2 · |v.gj − z.gj |+
X
j∈A

2 · |v.dj − z.dj |

where A = {N,S,E,W}.


