
Just Add Pepper: Extending Learning Algorithms for
Repeated Matrix Games to Repeated Markov Games

Jacob W. Crandall
Computing and Information Science Program
Masdar Institute of Science and Technology

Abu Dhabi, United Arab Emirates
jcrandall@masdar.ac.ae

ABSTRACT
Learning in multi-agent settings has recently garnered much
interest, the result of which has been the development of
somewhat effective multi-agent learning (MAL) algorithms
for repeated normal-form games. However, general-purpose
MAL algorithms for richer environments, such as general-
sum repeated stochastic (Markov) games (RSGs), are less
advanced. Indeed, previously created MAL algorithms for
RSGs are typically successful only when the behavior of as-
sociates meets specific game theoretic assumptions and when
the game is of a particular class (such as zero-sum games). In
this paper, we present a new algorithm, called Pepper, that
can be used to extend MAL algorithms designed for repeated
normal-form games to RSGs. We demonstrate that Pepper
creates a family of new algorithms, each of whose asymptotic
performance in RSGs is reminiscent of its asymptotic per-
formance in related repeated normal-form games. We also
show that some algorithms formed with Pepper outperform
existing algorithms in an interesting RSG.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence-
Learning

General Terms
Algorithms

Keywords
Multi-agent learning, stochastic games, game theory

1. INTRODUCTION
Much research in multi-agent learning (MAL) continues

to focus on learning in repeated normal-form (or matrix)
games. This research has resulted in many matrix learning
algorithms (MLAs – algorithms for learning repeated matrix
games), some of which are able to learn effectively in general-
sum matrix games. For example, M-Qubed has been shown
to perform robustly in several empirical studies involving
many different MLAs in many repeated matrix games [4, 10].

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Exp3 [2], GIGA-WoLF [6], and UCB [1] have also performed
well in certain games in these studies.

However, many situations in which MAL is necessary are
better modeled as repeated stochastic games (RSGs) than
repeated matrix games. In RSGs, rewards are received in-
crementally. This requires a learning agent to solve two
problems simultaneously. First, it must determine its de-
layed rewards, or the rewards it will receive in future states
of the world. These delayed rewards are contingent on the
strategies of the agent and its associates in future states.
Second, the agent (and its associates) must learn an effective
strategy in each state. But learning such strategies requires
accurate estimates of delayed rewards.

Whereas these chicken and egg problems can be solved si-
multaneously in single-agent domains via standard reinforce-
ment learning, they are not so easily solved in multi-agent
settings since an agent cannot easily predict or control its
associates’ current and future strategies. As a result, many
MAL algorithms have been investigated for RSGs. These
algorithms typically assume that associates will conform to
a particular game-theoretic behavior, and that the corre-
sponding game theoretic solution concept will define an ef-
fective strategy for the agent. While sometimes effective,
such algorithms often do not perform well when these as-
sumptions fail. For example, algorithms that seek to learn
a Nash equilibrium (NE) sometimes perform well in com-
petitive stochastic games in which the NE corresponds to
the minimax strategy (e.g., [17]), but often fail in repeated
general-sum stochastic games when there is not a unique
NE [5] (see also the folk theorem [12]). Additionally, many
algorithms require perfect knowledge of associates’ payoffs,
which are often unavailable.

In this paper, we introduce a new algorithm, called Pep-
per, for learning in RSGs for situations in which the ac-
tions of associates are observable, but where the payoffs of
associates and (initially) the state transitions of the game
are unknown. This new algorithm uses a separate instance
of a MLA to learn a strategy in each unique state of the
game using payoffs (future rewards) computed by Pepper.
To demonstrate the effectiveness of Pepper, we use it to de-
rive four new algorithms for RSGs. We then evaluate these
algorithms in an interesting RSG played against a variety of
learning algorithms and hand-coded (static) strategies.

2. BACKGROUND AND AN EXAMPLE
We begin by defining important terms and notation. We

then review the performance of existing algorithms in an
example RSG.

B

A
B A B

A B

(1, 7) (2, 2) (5, 5)

2

1

3

4

A

Figure 1: The SGPD game.

2.1 Definitions and Notation
We consider repeated stochastic games (RSGs) played by

players1 (or agents) i and −i. An RSG consists of a set of
stage games S, also known as world states. In each stage
s ∈ S, both players choose an action from a finite set. Let
A(s) = Ai(s) × A−i(s) be the set of joint actions available
in s, where Ai(s) and A−i(s) are the action sets of players
i and −i, respectively. Each episode of the game begins in
some beginning stage sb ∈ B ⊆ S and terminates when
some goal stage sg ∈ G ⊆ S is reached. Once a goal stage is
encountered, a new episode begins in some stage sb ∈ B.

When joint action a = (ai, a−i) is played in stage s,
player i receives a finite reward ri(s,a). Here, ai ∈ Ai(s)
and a−i ∈ A−i(s) are the actions of players i and −i, re-
spectively. Once the joint action a is played in s, the world
transitions to some new stage game s′ according to the prob-
abilistic stage transition model PM (s, s′,a).

We assume that the transition model PM is unknown to
the players initially. However, we assume that the players
can learn the transition model from experience by observing
joint actions and stage transitions. Additionally, we assume
that players can observe their own immediate rewards, but
not those of associates. We also assume that player i’s maxi-
mum possible reward Rmaxi for an episode is known a priori.
This assumption can be replaced by a process through which
Rmaxi is learned, but this is not essential to our discussion.

2.2 Motivating Example
Figure 1 depicts a stochastic game prisoner’s dilemma

(SGPD) [13]. In this game, two players, labeled A and B,
begin each episode in opposite corners of the world. The
goal of the game is to enter one of the gates (labeled 1, 2,
3, and 4 in the figure) in as few moves as possible. If both
agents try to enter gate 1 at the same time, then gates 1 and
2 close and the agents must enter gate 3. If only one agent
enters gate 1, gates 1–3 close and the other agent must enter
gate 4. If either agent enters gate 2, then gate 1 closes. If
both agents try to enter gate 2 they are both allowed pas-
sage. An episode ends once both agents have entered a gate.

The set of stages of the SGPD is defined by the positions
of the players and the status of the four gates. Each config-
uration of these elements is a unique stage game in which
both players’ can choose to move up, down, or toward the

1For ease of exposition, we assume the game has two players;
Pepper can easily be extended to (n > 2)-player games.

Table 1: High-level payoff matrix of the SGPD.
Defect Cooperate
(Gate 1) (Gates 2–4)

Defect (Gate 1) 2, 2 7, 1
Cooperate (Gates 2–4) 1, 7 5, 5

Table 2: Performance in the SGPD. Bold indicates
nearly ideal performance. Algorithms marked VI
use model-based, rather than model free, methods.

Algorithm
Associate

Self
Play

De-
fector

Coop-
erator

Ran-
dom

TFT

Q-learning 2.2 1.3 7.0 4.3 3.4
WoLF-PHC 1.9 1.2 6.9 4.1 2.1
Minimax-VI 2.0 1.9 7.0 4.4 2.0
Friend-VI 1.9 -0.9 3.0 1.0 2.0
Nash-VI* 2 2 7 4.5 2
uCE-VI* 5 1 5 3 5

FolkEgal*† 5 2 5 3.75 5

** Requires knowledge of associate’s payoffs; performance estimated

† Requires knowledge of stage transition probabilities PM (s, s′, a)

gates (right for player A, and left for player B). Moves into
a wall (boundary, black space, or closed gate) result in no
movement. Each player receives 10 points for entering any
gate, and is penalized 1 point for each move it takes.

A player that tries to enter gate 1 is said to have defected.
Otherwise, the player is said to have cooperated. Thus, the
high-level game is the prisoner’s dilemma (PD) matrix game
shown in Table 1; each cell lists the sum of rewards received
in an episode by the row and column players, respectively.

Table 2 shows the average asymptotic per episode pay-
offs of existing algorithms in the SGPD in self play and
when associating with four static associates. Defector always
defects, Cooperator always cooperates, Random chooses a
gate randomly, and TFT chooses a gate according to the
tit-for-tat strategy. Bold values indicate (nearly) ideal per-
formance. The payoffs of Q-learning [24], WoLF-PHC [7],
Minimax-VI [19], and Friend-VI [20] are based on 200,000-
episode games run using the parameter settings given in Ta-
ble 5. The payoffs of Nash-VI [16], utilitarian correlated
reinforcement learning (uCE-VI) [14], and FolkEgal [9] were
deduced from the descriptions of the algorithms.

Table 2 shows that none of the algorithms performs ide-
ally against this limited set of algorithms. Only uCE and
FolkEgal cooperate in self play, which results in an expected
per-episode payoff of 5. However, uCE and FolkEgal do not
behave ideally against Cooperator or Random. Additionally,
they must know their associate’s payoffs.

We seek to identify MAL algorithms that learn effectively
against many kinds of associates in the SGPD and other
general-sum RSGs when associate’s payoffs are unknown.
Since several matrix learning algorithms (MLAs) have, to
various degrees, achieved these objectives in matrix games
(such as Table 1), we explore the extension of these algo-
rithms to RSGs using Pepper.

3. PEPPER
Pepper (potential exploration with pseudo stationary re-

starts) is defined by three design choices. First, Pepper uti-
lizes the R-max [8] algorithmic framework, which incorpo-
rates the optimism-in-uncertainty principle. Second, Pep-

per defines a new mechanism for estimating future rewards,
which are used to estimate a payoff matrix for each stage of
the RSG. This mechanism is also designed to adhere to the
optimism-in-uncertainty principle, while eventually reflect-
ing the agent’s actual rewards in an episode. Third, Pepper
uses a separate instance of an MLA in each stage of the
game to learn the agent’s strategy in that stage. The MLA
employed in stage s ∈ S learns the agent’s policy in s as
it would learn a policy in a repeated matrix game, only it
learns from a payoff matrix defined by Pepper.

3.1 Algorithmic Framework
To determine how to act in stage s, player i must deter-

mine how its actions will affect it rewards in the remainder
of the episode (i.e., its future rewards). To do this, Pepper
computes the payoff matrix Ri(s), which estimates player i’s
future rewards for each joint action a ∈ A(s). Let Ri(s,a)
denote the expected future rewards obtained once the joint
action a is played in stage s. Also, let sk ∈ S be the kth

stage visited in an episode in which T stages are visited.
Then, Ri(s,a) is given by

Ri(sk,a) =

TX
τ=k

rti(sτ ,aτ), (1)

where aτ is the joint action taken in stage sτ . Bellman [3]
showed that Ri(sk,a) can be equivalently expressed as

Ri(sk,a) = ri(sj ,a) +
X
s′∈S

PM (sk, s
′,a) Vi(s

′), (2)

where Vi(s
′) is the expected future rewards for being in stage

s′. Thus, given ri(s,a), PM (s, s′,a), and Vi(s
′), Ri(s,a), for

each s ∈ S, can be computed using value iteration.
When ri(s,a), PM (s, s′,a) and Vi(s

′) are unknown, an
agent must learn them via exploration. In constant-sum
RSGs, the R-max algorithm [8] does this using the optimism-
in-uncertainty principle. R-max initially assumes that each
joint action from each stage results in maximal reward. It
removes this assumption once the joint action has been at-
tempted K (predetermined) times. This draws the agent
toward stages that have not been adequately explored.

Algorithm 1 embodies principles of the R-max algorithm
for RSGs minus rules specifying how πi(s) or Vi(s) are com-
puted. This algorithmic framework can be used to imple-
ment many MAL algorithms, including R-max and the algo-
rithms listed in Table 3, each of which computes πi(s) and
Vi(s) differently. The algorithms in Table 3 each assume
that all players will collectively conform to some game the-
oretic behavior, such as minimax (Minimax-Q), NE (Nash-
Q), correlated equilibria (CE-Q), or the Nash bargaining
solution (NBS-Q) [21]. When appropriate assumptions are
met, Ri(s,a) will converge to its “true” value, as it does in
single-agent reinforcement learning. However, when these
assumptions are not met as is often the case, these algo-
rithms often achieve low payoffs.

As an alternative, Pepper proposes a method for creating
a new family of algorithms for RSGs. This method also
utilizes Algorithm 1, but it proposes a new mechanism for
how πi(s) and Vi(s) should be computed.

3.2 Computing a Strategy (πi(s))
There exist MLAs that define strategy selection rules that

are successful in many repeated matrix games played with

Algorithm 1 Algorithmic framework

Input:
Let S′ = {s0, S} be a set of stage games, where s0 ∈ G
Let Rmaxi be player i’s maximum reward for an episode

Initialize:
∀s ∈ S′,a ∈ A(s), ri(s,a) = 0, PM (s, s0,a) = 1, κ(s,a)← 0
∀s ∈ S′, Vi(s) = Rmaxi and πi(s) = random
t← 1

repeat
∀s ∈ S,a ∈ A(s), update Ri(s,a) by value iteration; Eq. (2)
∀s ∈ S, update πi(s) and Vi(s)
Observe starting state s ∈ B
repeat

Select action ai according to πi(s) and execute
Observe at = (ai, a−i), s′, and ri
κ(s,a)← κ(s,a) + 1
if κ(s,a) ≥ K then

Update ri(s,a) according to observations
Update Vi(s)
Update PM (s, ·,a) according to observed frequencies
Update Ri(s,a) according to Eq. (2)
Update πi(s)

end if
s← s′

until s ∈ G
until Game Over

Table 3: Algorithms generalized by Algorithm 1.
Algorithm Computing π(s) Computing Vi(s

′)

Minimax-Q maximin strat. of Ri(s) maximin value of Ri(s)

Nash-Q A NE of Ri(s) value of a NE of R(s)

Friend-Q arg maxa∈A(s) Ri(s, a) maxa∈A(s) Ri(s, a)

CE-Q A CE of Ri(s) value of a CE of R(s)

NBS-Q NBS of R(s) NBS value of R(s)

many different associates. Pepper seeks to leverage these
learning rules by extending MLAs to RSGs. In particular,
Pepper uses an MLA to learn a strategy πi(s) in each stage
s ∈ S. The MLA used in stage s seeks to learn a strategy
that, given the strategy played by its associate in s, maxi-
mizes the payoffs defined by the payoff matrix Ri(s).

Given that the MLA in each stage s seeks to maximize
the agent’s payoffs as defined by Ri(s), the ability of the
MLA employed in stage s ∈ S to learn a successful strategy
is contingent on accurate estimates of Ri(s). Accurately
modeling Ri(s) depends, in turn, on effective estimates of
future reward, which are encoded by Vi(s

′).

3.3 Determining Future Rewards (Vi(s))
We advocate that estimates of Vi(s) should satisfy two

objectives, or properties:

Realism Property: Vi(s) must eventually reflect the ac-
tual payoffs received by the agent in an episode after stage
s is reached. That is, limt→∞ V

t
i (s) = V̄i(s), where V ti (s)

is the estimate of the expected rewards received in episode
t after stage s is reached, and V̄i(s) is the actual expected
sum of rewards received in an episode after s is reached.

Optimism Property: Vi(s) should overestimate, rather
than underestimate, the agent’s future reward while learn-
ing. That is, for all t, V ti (s) ≥ V̄i(s).

The realism property ensures that the MLA employed in
stage s eventually learns from true expected payoffs, while
the optimism property, similar to an admissible heuristic in

search, helps the agent to avoid learning strategies that lead
to premature convergence to local (but not global) maxima.

Pepper seeks to satisfy these two properties by combining
off-policy and on-policy methods for estimating Vi(s). Off-
policy methods estimate Vi(s) using some ideal (often de-
rived from Ri(s)) that the agent hopes to eventually reach.
This ideal is specific to the MLA that is used. For exam-
ple, each algorithm in Table 3 employs a different off-policy
method for estimating Vi(s). Let V off

i (s) denote the estimate
of Vi(s) computed from the designated off-policy method.

Alternately, on-policy methods estimate Vi(s) from the
actual distribution over joint actions induced by the players’
joint strategy. Let V on

i (s) denote this estimate. Formally,

V on
i (s) =

X
a=(ai,a−i)∈A(s)

πi(s, ai) π−i(s, a−i) Ri(s,a), (3)

where πi(s, ai) and π−i(s, a−i) are the probabilities that
players i and −i play actions ai and a−i, respectively, in
stage s. However, since player i does not know π−i(s) and
since its own strategy varies over time, V on

i (s) can be de-
fined in terms of the observed distribution of joint actions.
Let κ(s,a) be the number of times that joint action a has
been played in stage s, and let κt(s) be the number of times
that stage s has been visited. Then,

V on
i (s) =

X
a∈A(s)

κ(s,a)

κ(s)
Ri(s,a). (4)

In practice, κ(s,a)
κ(s)

can be replaced with a probability that

places higher weight on more recent observations.
V on
i (s), as computed in Eq. (4), satisfies the realism prop-

erty when Ri(s,a) approaches true expected payoffs for each
joint action a ∈ A(s). Given that Ri(s) converges with high
probability when each joint action in each stage is played
sufficiently [8], Vi(s) will converge to the average rewards
received from stage s, since joint actions not played suffi-
ciently will not substantially impact it.

However, V on
i (s) may not satisfy the optimism property.

Rather, an agent hoping to compute Vi(s) to satisfy the
optimism property could estimate Vi(s) as the maximum
of V on

i (s) and V off
i (s), particularly since both V on

i (s) and
V off
i (s) are based on initially optimistic assessments of Ri(s).

We denote V̂i(s) as this optimistic assessment, given by

V̂i(s) = max
“
V off
i (s), V on

i (s)
”
. (5)

Thus, V̂i(s) has the best chance of satisfying the optimism
property, and V on

i (s) satisfies the realism property. Pepper
seeks to obtain the best of both worlds by computing Vi(s)

as a convex combination of V̂i(s) and V on
i (s). That is,

Vi(s) = λi(s) V̂i(s) + (1− λi(s)) V on
i (s) (6)

where λi(s) ∈ [0, 1] is set to one initially, but approaches zero
as the agent obtains more experience in stage s. However, it
is not clear how quickly λi(s) should be decreased. If λi(s)
decreases too quickly, then Eq. (6) is unlikely to satisfy the
optimism property. On the other hand, if λi(s) decreases
too slowly, then the algorithm will learn too slowly.

In attempt to avoid either extreme, Pepper regulates λi(s)
using a concept that we refer to as pseudo-stationarity. We
say that payoff matrix Ri(s) is pseudo-stationary if each
entry of Ri(s) has stopped decreasing.

Pseudo-Stationary: Let RTi (s,a) be the lowest estimate
of Ri(s,a) observed up to time T , and let Rti(s,a) be the
estimate of Ri(s,a) at time t. Ri(s) is pseudo-stationary
after time T if ∀t ≥ T,a ∈ A(s), Rti(s,a) ≥ RTi (s,a) + δ,
where δ > 0 is some small positive constant.

Since Ri(s,a) is initially set to Rmaxi , it will likely decrease
in early episodes. Thus, Ri(s) will not likely be pseudo-
stationary in early episodes of the game, but will eventually
become pseudo-stationary given episodes of finite length.

Pepper uses the concept of non-pseudo-stationary re-starts
to regulate λi(s). That is, when Ri(s) is observed to not be
pseudo-stationary, λi(s) is reset to one. This restarts the

transition from V̂i(s) to V on
i (s) defined by Eq. (6). Let κ′(s)

be the number of visits to stage s since Ri(s) was last ob-
served to not be pseudo-stationary. Then, λi(s) is given by:

λi(s) = max

„
0,

C − κ′(s)
C

«
, (7)

where C is some positive integer. λi(s) decreases more
slowly for higher values of C than for lower values of C
in the absence of non-pseudo-stationary restarts.

Since the number of restarts in each stage is finite given
bounded rewards, Vi(s) as defined by Eqs. (6) and (7) will
converge to actual rewards if each (s,a)-pair is visited suf-
ficiently. Since Algorithm 1 ensures with high probability
that all (s,a)-pairs will be explored sufficiently given that
the optimism property is met [8], Vi(s) will converge to ac-
tual rewards in stages encountered in the learned solution
when the optimism property is met.

4. ALGORITHMS FORMED BY PEPPER
We now describe four new algorithms for RSGs formed by

extending four different MLAs with Pepper. Algorithm 1
paired with Eq. (6) requires that we must only define how
πi(s) and V off

i (s) are computed. We refer the reader to the
literature for specifications of how πi(s) is computed by each
MLA, as Pepper uses these rules as they have been defined.
We now specify how each algorithm computes V off

i (s).

4.1 M-Qubed with Pepper
M-Qubed [10] is a reinforcement learning algorithm that

balances cautious, optimistic, and best-response attitudes.
It encodes the previous ω joint actions taken by the agents
as state (called recurrent state). It then learns a Q-value for
each recurrent state-action pair, each of which is initialized
to its highest possible value given its discount factor γ. M-
Qubed typically selects actions based on its Q-values in the
current (recurrent) state, but triggers to its maximin strat-
egy when its total loss exceeds a pre-determine threshold.

M-Qubed learns to play the Nash bargaining solution in
self play in many repeated matrix games. It also avoids
being exploited, meaning that its long-term payoffs meet or
exceed its maximin value regardless of the behavior of its
associates. In the PD matrix game, it learns to cooperate
in self play and to defect against associates that defect.

M-Qubed’s mechanics define a relaxation search for a strat-
egy that sustains a future discounted reward r

1−γ that meets
or exceed its highest current Q-value over all of its recurrent
states (denoted Q∗(s)). Thus, basing V off

i (s) on Q∗(s) is a
natural choice. Formally, let Ω(s) be the set of M-Qubed’s
recurrent states in stage s, and let Ω′(s) ⊆ Ω(s) be the set
of recurrent states visited in the last τ visits to s. Also, let

Q(σ, ai) be the Q-value for taking action ai in σ ∈ Ω. Then,

V off
i (s) = (1− γ) ·

„
max

σ∈Ω′(s),ai∈Ai(s)
Q(σ, ai)

«
(8)

In RSGs, M-Qubed’s recurrent state σ ∈ Ω(s) in stage s is
determined by the previous ω joint actions taken in s.

4.2 Salt and Pepper
The satisficing learning technique (Salt) is a simple MLA

proposed by Karandikar et al. [18]. We use the version of the
algorithm defined and analyzed by Stimpson and Goodrich
[22]. Salt converges with high probability in self play to
pareto efficient solutions. In the repeated PD matrix game,
it learns with high probability to cooperate in self play and
to defect against agents that always defect [22].

Salt and Pepper encodes an aspiration level αi(s) in each
stage s ∈ S, which is initialized to maxaRi(s,a). αi(s)
is then incremented toward Ri(s,a) when a is played in s.
When αti ≥ Ri(s,a), Salt and Pepper repeats its action the
next time s is visited. Otherwise, it randomly selects a new
action. Salt and Pepper sets V off

i (s) to αti, which typically
provides an optimistic estimate of Vi(s) in early episodes.

4.3 Fictitious Play with Pepper
Fictitious play (FP) [11] is one of the oldest MLAs. It

forms a simple model of its opponent by observing the em-
pirical distribution of its opponent’s actions. In each time
step, it selects the action that maximizes its expected pay-
off given this opponent model and its payoff matrix. For-
mally, let γ(a−i) be the percentage of time that its opponent
(player −i) has played action a−i in the past. Then, FP’s
utility for playing action ai is:

ui(ai) =
X

a−i∈A−i(s)

γ(a−i) Ri(s, (ai, a−i)). (9)

We implemented weighted FP, in which the assessment γ(a−i)
gives more weight to recent observations,

FP converges to a NE in self play in matrix games that
are iterative dominance solvable. In the PD matrix game,
it learns to defect against all associates regardless of their
propensity to cooperate or retaliate.

FP with Pepper sets V off
i (s) to its max utility. Formally,

V off
i (s) = max

ai∈Ai(s)
ui(ai). (10)

This valuation is not optimistic when Ri(s) has converged
to actual payoffs. However, since Ri(s) is initialized opti-
mistically, it is optimistic initially.

4.4 GIGA-WoLF with Pepper
GIGA-WoLF [6] is a gradient ascent MLA that uses mul-

tiple learning rates to achieve no regret. Unlike the other
three learning algorithms, GIGA-WoLF selects a strategy
from the mixed strategy space. In the PD matrix game,
GIGA-WoLF quickly learns to defect against all associates.

GIGA-WoLF with Pepper sets V off
i (s) to its weighted av-

erage reward (given by Ri(s)); newer samples receive more
weight. Thus, like FP with Pepper, this valuation is opti-
mistic initially, and falls to true values as Ri(s) converges.

5. RESULTS
In this section, we evaluate the behavior and performance

of M-Qubed with Pepper, Salt and Pepper, FP with Pepper,

0 2 4 6 8 10 12 14 16

x 10
4

−1

0

1

2

3

4

5

6

Episode

A
ve

ra
ge

 P
ay

of
f

Self Play in the SGPD

M−Qubed w/ Pepper
Salt and Pepper
FP w/ Pepper
GIGA−WoLF w/ Pepper

Figure 2: Average payoffs in self play over 20 trials.

and GIGA-WoLF with Pepper in the SGPD. First, we ana-
lyze their behavior in self play and against WoLF-PHC [7],
an MAL algorithm that typically learns to defect in this
game. We then provide a more in-depth analysis of the ro-
bustness of these algorithms when associating with many
different kinds of associates in the SGPD, including associ-
ation among the various Pepper algorithms, other existing
learning algorithms, and hand-coded (static) strategies. We
do so by conducting a round-robin tournament and an evolu-
tionary tournament, each involving the same 12 algorithms.
Parameter values for all algorithms are provided in Table 5.

5.1 Pepper in the SGPD
Figure 2 shows the average performance over time of M-

Qubed with Pepper, Salt and Pepper, FP with Pepper, and
GIGA-WoLF with Pepper in the SGPD in self play. The
figure shows that both M-Qubed with Pepper and Salt and
Pepper learn to cooperate in self play. This results in an
average asymptotic payoff of 5 points per episode. However,
while both of these algorithms learn to cooperate in self
play, Salt and Pepper converges much faster than M-Qubed
with Pepper. These results are consistent with the behavior
of these algorithm in the PD matrix game, in which both
Salt and M-Qubed learn to cooperate in self play, with Salt
converging faster than M-Qubed.

Alternately, Figure 2 shows that both FP with Pepper
and GIGA-WoLF with Pepper quickly learn to defect in self
play in the SGPD. This results in an asymptotic payoff of
2 points per episode. This is substantially less than if both
agents had learned to cooperate, but it is consistent with
how GIGA-WoLF and FP perform in the PD matrix game.

Against WoLF-PHC in the SGPD, the average asymptotic
payoff of each algorithm is near 2 points per episode (Fig-
ure 3). All four algorithms learn to defect against WoLF-
PHC, though Salt and Pepper’s average payoffs are slightly
lower than that of mutual defection. This degraded per-
formance is due to occasional exploration by WoLF-PHC,
which causes Salt and Pepper to become dissatisfied in some
stages. This requires it to re-learn how to defect, which typ-
ically takes several episodes. Again, M-Qubed with Pepper
learns much slower than the other algorithms.

Despite M-Qubed with Pepper’s slow learning rate, we
are not aware of another learning algorithm from the liter-
ature that, without knowing its associate’s payoffs, learns
to both cooperate in self play and to always defect against
WoLF-PHC in the SGPD. This demonstrates the effective-
ness of Pepper for creating algorithms that outperform ex-
isting MAL algorithms in RSGs.

0 2 4 6 8 10 12 14 16

x 10
4

−1

0

1

2

3

4

5

6

Episode

A
ve

ra
ge

 P
ay

of
f

Vs. WoLF−PHC in the SGPD

M−Qubed w/ Pepper
Salt and Pepper
FP w/ Pepper
GIGA−WoLF w/ Pepper

Figure 3: Average payoffs against WoLF-PHC over
20 trials.

Pepper On Policy Off Policy
0

1

2

3

4

5

6

7

V(s)

A
ve

ra
ge

 P
ay

of
f

Self Play

Pepper On Policy Off Policy
0

0.5

1.0

1.5

2.0

2.5

V(s)

A
ve

ra
ge

 P
ay

of
f

Vs. WoLF−PHC

Figure 4: Average asymptotic payoffs of M-Qubed
with Pepper given different estimates of Vi(s) in self
play and against WoLF-PHC.

The success of M-Qubed with Pepper can be traced in
large part to how Pepper estimates Vi(s). Figure 4 shows the
average payoffs of M-Qubed in self play and against WoLF-
PHC given different methods for estimating Vi(s). When
Vi(s) is set equal to V on

i (s) (On Policy), M-Qubed still learns
to cooperate in self play, but it gets exploited by WoLF-
PHC. When Vi(s) is set equal to V off

i (s) (Off Policy), its
payoffs in self play and against WoLF-PHC are substantially
lower than when Vi(s) is set by Pepper. In fact, in one trial
(not reflected in Figure 4) in self play, using the off-policy
valuation caused both agents to converge to a strategy in
which neither agent entered a gate within 200 moves.

To better understand the Vi(s) as it is computed by Pep-
per, consider Figure 5. This figure shows values of V off

i (s),
V on
i (s), and Vi(s) over time in the stage game in which each

agent is immediately next to an open gate 1. Figures 5(a)–
5(d) correspond to valuations made by each of the Pepper
algorithms in self play, while Figures 5(e) and 5(f) show valu-
ations of M-Qubed with Pepper and Salt and Pepper against
WoLF-PHC. We note that, from this particular stage, mu-
tual defection gives each agent a future reward of 4, and
mutual cooperation gives each agent a future reward of 7.

We make several observations about Figure 5. First, all
valuations eventually converge to the true value of the stage
in question in each scenario. Second, V off

i (s) is often greater
than V on

i (s) in each scenario. Thus, Vi(s) tends to mirror
V off
i (s) except in the case of M-Qubed with Pepper (Fig-

ures 5(a) and 5(e)), particularly against GIGA-WoLF. In
this latter scenario, Vi(s) eventually mirrors V on

i (s), which
allows it to defect against WoLF-PHC. Third, Vi(s) typi-
cally, but not always, conforms with the optimism property;
Vi(s) is usually greater than or equal to the eventual value of
the stage. This causes the algorithms to effectively explore
using the optimism-in-uncertainty principle.

0 10,000 20,000 30,000 40,000
4

5

6

7

8

9

Episodes

P
ay

of
f

On Policy V(s)
Off Policy V(s)
V(s)

(a) M-Qubed in self play

0 2000 4000 6000 8000
4

5

6

7

8

9

Episodes

P
ay

of
f

On Policy V(s)
Off Policy V(s)
V(s)

(b) Salt in self play

0 1000 2000 3000 4000
3

4

5

6

7

8

9

Episodes

P
ay

of
f

On Policy V(s)
Off Policy V(s)
V(s)

(c) FP in self play

0 2000 4000 6000 8000 10000
3

4

5

6

7

8

9

Episodes

P
ay

of
f

On Policy V(s)
Off Policy V(s)
V(s)

(d) GIGA-WoLF in self play

0 20,000 40,000 60,000 80,000 100,000 120,000
2

3

4

5

6

7

8

9

Episode
P

ay
of

f

On Policy
Off Policy
V(s)

(e) M-Qubed vs. WoLF-PHC

0 2000 4000 6000 8000 10000
3

4

5

6

7

8

9

Episode

P
ay

of
f

On Policy
Off Policy
V(s)

(f) Salt vs. WoLF-PHC

Figure 5: V on
i (s), V off

i (s), and Vi(s) in the SGPD for
the stage where both agents are in front of gate 1.

5.2 Tournaments in the SGPD
We conducted a round-robin tournament involving 12 al-

gorithms: the four Pepper algorithms, four other MAL al-
gorithms (Q-learning [24], WoLF-PHC, Friend-VI [20], and
Minimax-VI [20]), and four static strategies (Tit-for-Tat,
Always Defect, Always Cooperate, and Random). In this
tournament, each algorithm was paired with itself and the
other algorithms in a 200,000-episode SGPD. Since we are
primarily concerned with asymptotic performance in this pa-
per, the performance of the algorithms was taken only in the
last 10,000 episodes. Alternate evaluation windows (such as
the average of all episodes) could yield different results.

The results of the round-robin tournament are shown Ta-
ble 4. M-Qubed with Pepper had the highest average per-
formance, followed by Always Defect, Tit-for-Tat, and Salt
and Pepper. FP with Pepper and GIGA-WoLF with Pepper
placed fifth and sixth, respectively.

In addition to learning to cooperate in self play, M-Qubed
with Pepper learns mutual cooperation with Salt and Pep-
per. On the other hand, it learns to always defect against
each of the other algorithms except Tit-for-Tat. This allows
it to avoid being exploited by algorithms that are apt to de-
fect, and to exploit algorithms that will cooperate (Always
Cooperate, Friend-VI, and, to a lesser degree, Random).

However, M-Qubed with Pepper does not learn to always
cooperate with Tit-for-Tat, nor do any of the other learn-
ing algorithms. While an ideal algorithm cooperates with
Tit-for-Tat, the version of Tit-for-tat we implemented for
the SGPD responds to the global behavior of its associate,

Table 4: Average asymptotic payoffs in the SGPD for each pairing. All results are an average of 20 trials.

Algorithm

Associate

M-Qubed
w/ Pepper

Always
Defect

TFT
Salt
and
Pepper

FP w/
Pepper

GIGA-
WoLF w/
Pepper

Q-
learn-
ing

Mini-
max-
VI

Rand-
om

WoLF-
PHC

Always
Coop-
erate

Friend-
VI

Ave.

1. M-Qubed
5.00 2.00 3.86 5.00 1.99 2.07 2.01 2.01 4.48 2.08 7.00 6.97 3.70

w/ Pepper
2. Always

2.00 2.00 2.00 2.00 2.00 2.08 5.03 2.08 4.51 5.05 7.00 6.38 3.51
Defect

3. TFT 3.89 2.00 5.00 3.62 4.00 2.06 3.62 2.07 3.75 2.27 5.00 4.42 3.47
4. Salt and

4.89 2.00 2.69 5.00 2.00 1.63 1.63 1.62 2.81 1.64 7.00 6.96 3.32
Pepper

5. FP w/
2.02 2.00 3.00 2.00 2.00 2.08 2.11 2.08 4.50 2.08 7.00 6.39 3.11

Pepper
6. GIGA-WoLF

1.93 1.91 1.99 2.86 1.91 1.99 2.00 1.99 4.44 2.00 6.97 5.55 2.96
w/ Pepper

7. Q-learning 1.98 1.31 3.37 2.71 1.87 1.95 2.15 1.95 4.32 3.12 6.96 3.80 2.96

8. Minimax-VI 1.97 1.91 2.00 2.89 1.91 2.00 2.00 1.99 4.45 2.00 6.97 4.78 2.91

9. Random 1.52 1.50 3.75 3.49 1.50 1.54 1.71 1.55 3.75 2.40 6.00 5.07 2.81

10. WoLF-PHC 1.90 1.21 2.14 2.71 1.89 1.95 1.64 1.94 4.06 1.95 6.94 1.94 2.52
11. Always

1.00 1.00 5.00 1.00 1.00 0.99 1.00 1.00 3.00 1.02 5.00 3.76 2.06
Cooperate

12. Friend-VI -0.85 -0.94 1.99 -0.89 -0.87 -0.63 -1.20 -0.96 1.01 1.96 2.98 1.93 0.29

whereas Pepper and the other learning algorithms in our
study learn locally. This prohibits these algorithms from
observing global effects not connected in the Markov chain.

Like M-Qubed with Pepper, Salt and Pepper learns to de-
fect against Friend-VI, Always Cooperate, Always Defect,
and FP with Pepper. However, as against WoLF-PHC (Fig-
ure 3), Salt and Pepper is sometimes exploited by GIGA-
WoLF with Pepper and Minimax-VI. Likewise, it does not
always defect against Random. Meanwhile, both GIGA-
WoLF with Pepper and FP with Pepper learn to defect
against all associates, with some slight variations caused
by GIGA-WoLF’s exploration strategy. These results are
consistent with the behavior of these algorithms in the PD
matrix game, which demonstrates Pepper’s ability to extend
algorithms designed for repeated matrix games to RSGs.

We also conducted an evolutionary tournament in the
SGPD. In this tournament, an arbitrarily large population
of agents, each using one of the 12 algorithms, was evolved
over a series of generations according to the algorithms’ per-
formance in the SGPD against the agents in the population.
Initially, each algorithm was equally represented in the pop-
ulation. In each subsequent generation, the population was
altered using the replicator dynamic [23].

Figure 6 shows the proportion of the population using each
algorithm over time. After about 10 generations, Tit-for-
Tat and M-Qubed with Pepper dominated the population,
with Salt and Pepper also holding a small but substantial
share. However, once these three algorithms dominated the
population, M-Qubed with Pepper quickly took over.

6. CONCLUSIONS AND DISCUSSION
In this paper, we presented a new algorithm, called Pep-

per, which is designed to extend learning algorithms de-
signed for repeated matrix games to algorithms capable of
playing effectively in repeated stochastic games (RSGs). To
demonstrate the usefulness of Pepper, we extended four ma-
trix learning algorithms from the literature to algorithms for
RSGs using Pepper. We then evaluated their performance in
a stochastic game prisoner’s dilemma (SGPD). Our results

0 10 20 30 40 50 60 70

0

20

40

60

80

100

Generations

%
 P

op
ul

at
io

n
S

ha
re

M−Qubed
w/ Pepper

Salt and
Pepper

Tit−for−Tat

Figure 6: Results of the evolutionary tournament.

show that the behavior of these algorithms in the SGPD is
reminiscent of their behavior in the corresponding prisoner’s
dilemma matrix game.

As in many other MAL algorithms for RSGs, one draw-
back of Pepper is that all learning is local (within a stage).
Thus, it does not account for some effects that are only vis-
ible globally. In this paper, this was demonstrated by the
fact that none of the learning algorithms we considered were
able to learn to consistently cooperate with Tit-for-Tat.

Our results also found that combining the M-Qubed al-
gorithm with Pepper produces an algorithm that learns in
the SGPD to cooperate in self play, while learning to defect
against associates that are not apt to cooperate. We are not
aware of another algorithm in the literature that is able to
achieve this without knowing its associate’s payoffs as well
as the state transitions of the game. As a result, M-Qubed
with Pepper outperformed the other algorithms in both a
round-robin and evolutionary tournament.

Despite its robust behavior in the SGPD, M-Qubed with
Pepper learns very slowly. While its learning rate can be
increased to some degree by simply adjusting M-Qubed’s
learning rate α, perhaps a more effective solution would be
to deduce when a conflict between agents is possible [15] or
to use different kinds of matrix learning algorithms (MLAs)

in each stage of the game. The selection of the MLA used
in each stage could be based on that stage’s payoff ma-
trix. Faster matrix learning algorithms could be used in
stages that do not appear to require sophisticated reason-
ing, whereas slower matrix learning algorithms (such as M-
Qubed) could be used in stages that appear to require more
sophistication. Pepper makes this possible.

7. ACKNOWLEDGMENTS
The author would like to thank Michael A. Goodrich of

Brigham Young University for his helpful feedback.

8. REFERENCES
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time

analysis of the multi-armed bandit problem. Machine
Learning, 47 (2–3):235–256, 2002.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E.
Schapire. Gambling in a rigged casino: the adversarial
multi-armed bandit problem. In Proc. of the 36th
Symp. on the Foundations of CS, pages 322–331.
IEEE Computer Society Press, 1995.

[3] R. E. Bellman. Dynamic Programming. Princeton
University Press, NJ, 1957.

[4] B. Bouzy and M. Metivier. Multi-agent learning
experiments in repeated matrix games. In Proc. of the
27 th Intl. Conf. on Machine Learning, 2010.

[5] M. Bowling. Convergence problems of general-sum
multiagent reinforcement learning. In Proc. of the 17 th

Intl. Conf. on Machine Learning, pages 89–94, 2000.

[6] M. Bowling. Convergence and no-regret in multiagent
learning. In Advances in Neural Information
Processing Systems 17, pages 209–216, 2005.

[7] M. Bowling and M. Veloso. Multiagent learning using
a variable learning rate. Artificial Intelligence,
136(2):215–250, 2002.

[8] R. I. Brafman and M. Tennenholtz. R-max – a general
polynomial time algorithm for near-optimal
reinforcement learning. The Journal of Machine
Learning Research, 3:213–231, March 2003.

[9] E. M. De Cote and M. L. Littman. A polynomial-time
Nash equilibrium algorithm for repeated stochastic
games. In Proc. of the 24 th Conf. on Uncertainty in
Artificial Intelligence, 2008.

[10] J. W. Crandall and M. A. Goodrich. Learning to
compete, coordinate, and cooperate in repeated games
using reinforcement learning. Machine Learning,
82(3):281–314, 2011.

[11] D. Fudenberg and D. K. Levine. The Theory of
Learning in Games. The MIT Press, 1998.

[12] Herbert Gintis. Game Theory Evolving: A
Problem-Centered Introduction to Modeling Strategic
Behavior. Princeton University Press, 2000.

[13] M. A. Goodrich, J. W. Crandall, and J. R. Stimpson.
Neglect tolerant teaming: Issues and dilemmas. In
AAAI Spring Symp. on Human Interaction with
Autonomous Systems in Complex Environments, 2003.

[14] A. Greenwald and K. Hall. Correlated Q-learning. In
Proc, of the 20 th Intl. Conf. on Machine Learning,
pages 242–249, 2003.

[15] Y. M. De Hauwere, P. Vranx, and A. Nowe. Future
sparse interactions: A MARL approach. In Proc. of

the 9 th European Workshop on Reinforcement
Learning, 2011.

[16] J. Hu and M. P. Wellman. Multiagent reinforcement
learning: Theoretical framework and an algorithm. In
Proc. of the 15 th Intl. Conf. on Machine Learning,
pages 242–250, 1998.

[17] M. Johanson, N. Bard, M. Lanctot, R. Gibson, and
M. Bowling. Efficient Nash equilibrium approximation
through Monte Carlo counterfactual regret
minimization. In Proc. of the 11 th Intl. Conf. on
Autonomous Agents and Multiagent Systems, 2012.

[18] Rajeeva Karandikar, Dilip Mookherjee, Debraj Ray,
and Fernando Vega-Redondo. Evolving aspirations
and cooperation. Journal of Economic Theory,
80:292–331, 1998.

[19] M. L. Littman. Markov games as a framework for
multi-agent reinforcement learning. In Proc. of the
11 th Intl. Conf. on Machine Learning, pages 157–163,
1994.

[20] M. L. Littman. Friend-or-foe: Q-learning in
general-sum games. In Proc. of the 18 th Intl. Conf. on
Machine Learning, pages 322–328, 2001.

[21] H. Qiao, J. Rozenblit, F. Szidarovszky, and L. Yang.
Multi-agent learning model with bargaining. In The
2006 Winter Simulation Conf., pages 934–940, 2006.

[22] J. R. Stimpson and M. A. Goodrich. Learning to
cooperate in a social dilemma: A satisficing approach
to bargaining. In Proc. of the 20 th Intl. Conf. on
Machine Learning, pages 728–735, 2003.

[23] P. D. Taylor and L. Jonker. Evolutionarily stable
strategies and game dynamics. Mathematical
Biosciences, 40:145–156, 1978.

[24] C. Watkins and P. Dayan. Q-learning. Machine
Learning, 8:279–292, 1992.

9. APPENDIX

Table 5: Parameter settings and algorithm specifi-
cations.

Pepper K = 20 (for FP) and K = 5 (for Salt,
M-Qubed, and GIGA-WoLF); C = 1000

M-Qubed γ = 0.95, η(t) = 0.04·1000
1000+maxs κt(s)

, ω = 1,

ξ ∈ [0.1, 0.15], α = 0.1, τ = 10, 000, and
Ltol
i = 500 · |Ai(s)| · |Ai(s)| · |A−i(s)| ξ,

Salt λ = 0.99

Fictitious Play γt+1
i (a) = αγti (a) + (1− α)I(a, a−i),

where I(·) is the indicator function and

α = min
“
0.99,

κi(s)−1
κi(s)

”
GIGA-WoLF η = 0.01; explores with probability 0.01;

uses Ri(s) to estimate the reward gradient
Minimax-VI Uses Algorithm 1 with K = 20;

explores with probability 0.01
Friend-VI Uses Algorithm 1 with K = 20;

explores with probability 0.01

WoLF-PHC α = 1
100+κi(s,a)/10000

, δ = δw = 1
20000+t

,

δl = 4δw, ∀s, a, Q0(s, a) = rand
“
0,
rmax

i
1−γ

”
,

explores with probability 0.01,
initial policy is a random mixed strategy

Q-learning α = 1
10+κi(s,a)/10000

, γ = 1,

explores w/ prob. max(0.01, 0.2− κi(s)
100,000

)

