ABSTRACT

Flash memory is a widely used, reliable, and flexible nonvolatile memory to store software code and data in a microcontroller. Failing to handle the flash according to data-sheet specifications may result in unreliable operation of the application. This application report explains the physics behind these specifications and also gives recommendations for correct MSP430 flash handling. All examples are based on the flash memory used in the MSP430F1xx, MSP430F2xx, and MSP430F4xx microcontroller families.

Contents

1 Flash Memory ... 2
2 Simplified Flash Memory Cell ... 2
3 Flash Memory Parameters .. 3
4 Flash Enhancements With Software 7
5 Conclusion ... 8
6 References ... 8

List of Figures

1 Flash Memory Cell ... 2
2 Erasure of Flash Memory Cell (Erased Cell Is on the Right) ... 2
3 Programming a Flash Memory Cell (Programmed Cell Is on the Right) .. 3
4 Leak Mechanism in Tunnel Oxides 4

List of Tables

1 Data Retention Over Recommended Operating Temperature in Data Sheets 4
2 Flash Endurance in the Data Sheets 5
3 Example of Cumulative Program Time in the Data Sheets ... 6
1 Flash Memory

Today, flash memory is one of the most popular nonvolatile memories to store program code and constant data values. Many microcontrollers, such as the MSP430 family of microcontrollers, have integrated flash memory for nonvolatile data storage. But there are big differences in behavior and performance of flash memory cells. This report explains the parameters and behavior of the ultra-low-power flash memory used in the MSP430F1xx, MSP430F2xx, and MSP430F4xx families.

2 Simplified Flash Memory Cell

A flash memory cell is based on a transistor with a floating gate. Figure 1 shows a simplified schematic of a flash memory cell. The ultra-low-power flash memory cell of a MSP430 is slightly modified, but the basic function is the same.

![Flash Memory Cell Diagram](image1)

Figure 1. Flash Memory Cell

Underneath the control gate is an additional floating gate. This floating gate is either fully charged or discharged. Charging and discharging this floating gate is done with high energy through the oxide. The amount of charge in the floating gate influences the threshold of the transistor, which generates a logical 1 or 0 when this flash cell is read.

Erasing a flash cell, as shown in Figure 2, is positive charging the floating gate. A positive-charged floating gate results in reading a logical 1 from this erased memory cell. Negatively charging the floating cell, as shown in Figure 3, means programming this cell. The CPU reads from a programmed cell the logical value 0. For erasing and programming, high energy is needed to transport the charge through the oxide by FN tunneling for erasure or channel hot electron (CHE) injection for programming.

![Erasure of Flash Memory Cell](image2)

Figure 2. Erasure of Flash Memory Cell (Erased Cell Is on the Right)
3 Flash Memory Parameters

3.1 Data Retention

3.1.1 Leakage Mechanism

Data retention is limited by leakage current through the insulating oxide. Leakage can only occur if the floating gate is fully charged. Therefore, leakage only can flip an erased cell with the logic level 1 to a programmed cell with the logic level 0. According to Manabe [1], there are several phenomena that cause leakage.

- Conventional stress induced leakage current (SILC) (see Figure 4a) explained by single trap-assisted tunneling conduction
- Anomalous SILC explained by leakage path, hopping conduction mechanism (HCM) large leak, little E-field dependence, intermittent (see Figure 4b)
- Trapped charges can block up the leak (see Figure 4c).
Leakage behavior depends on temperature, program/erase cycles, lifetime, and process. In an end application, the main influence on data retention is temperature.

3.1.2 Data Retention Time

A common concern with nonvolatile erasable memories is data retention. As explained in Section 3.1.1, over time, the floating gate charge is reduced due to leakage introduced by oxide defects. With higher temperatures, leakage current increases and, thus, the charge on the floating gate is reduced more quickly than at lower temperatures. This temperatures dependence follows the Arrhenius equation (see Equation 1):

$$AF = e^{\frac{E_a}{k(T_1 - T_2)}}$$

(1)

Where

- AF = Acceleration factor
- $E_a = 0.6$ eV = Activation energy
- $k = 86.17 \times 10^{-5}$ = Speed constant
- $T_1 = $ Temperature 1 (K)
- $T_2 = $ Temperature 2 (K)

The Arrhenius equation gives an acceleration factor (AF) for data retention based on a temperature difference. Because it would take too long to measure a data-retention time at 25°C, these measurements are done at a much higher temperature to accelerate the process. In the data sheets of MSP430 devices, data retention is specified to exceed 100 years at 25°C (see Table 1). This value is industry accepted and all vendors specify 100 years as the flash data retention duration at 25°C, despite it being extremely conservative.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{\text{Retention}}$</td>
<td>$T_J = 25^\circ C$</td>
<td>100</td>
<td></td>
<td>years</td>
</tr>
</tbody>
</table>

Further tests show the exact number of years at 25°C is 1324 years.[6]

Equation 2 is an example of using the Arrhenius equation to calculate data retention for any ambient temperature:

$$T_1 = 50^\circ C = 323K$$
$$T_2 = 25^\circ C = 298K \text{ (data-sheet specification)}$$

$$AF = e^{\frac{E_a}{k(T_1 - T_2)}} = e^{\frac{0.6 \text{ eV}}{86.17 \times 10^{-5} \left(\frac{1}{323K} - \frac{1}{298K}\right)}} \approx 6$$

(2)
Stored data ages at 50°C six times faster than at 25°C.

In an application operating at 50°C, 24 hours per day, 7 days per week, the data retention time (specified in Understanding MSP430 Flash Data Retention (SLAA392) [6]) is reduced from 1324 years to 1324/6 = 220 years.

If the application is running 5 hours per day at 50°C and the rest of the day at 25°C, the data retention is calculated as shown here:

5 hours/day at 50°C is equivalent data aging at 25°C: 5 hours × 6 = 30 hours
19 hours/day at 25°C is equivalent data aging at 25°C: 19 hours
Total data aging per day is 30 hours + 19 hours = 49 hours = 2 days at 25°C.
In this scenario, data retention is 662 years.

Erased MSP430 flash memory bits have fully charged floating gates and read back as logical 1s. Therefore, single bit failures due to leakage currents show erroneous 0s that should be 1s. These single bit failures based on leakage currents can never read erroneous 1, instead of expected 0s.

3.2 Flash Endurance

Like any other erasable memory, flash devices have a limited number of erase/write cycles they can withstand without failure. The reason for the limitation depends on either charge trapping characteristics or the dielectric breakdown characteristics of the tunnel oxide. This introduces a term called endurance. Endurance is a measure of the number of erase/write cycles that a flash array can achieve while retaining data integrity. Per IEEE Standard Definitions and Characterization of Floating Gate Semiconductor Arrays [2], endurance is defined as "The measure of the ability of a nonvolatile memory device to meet its data-sheet specification as a function of accumulated nonvolatile data changes." The flash endurance specified in MSP430 data sheets is shown in Table 2.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program/erase endurance</td>
<td>(10^4)</td>
<td>(10^5)</td>
<td></td>
<td>Cycles</td>
</tr>
</tbody>
</table>

The data sheet specifies a minimum of 10 000 read/write cycles, while the devices typically fulfill 100 000 read/write cycles.

MSP430 endurance testing shows that most devices easily achieve more than 100 000 cycles at ambient or high temperature, while the number of cycles at low temperature is in the range of a few ten thousands. Failures are always a single bit failing erase. Measurements show improvement in the number of cycles if a quiescent period after erase operations is added.

The most common problem is stuck cells caused by charge trapping. Charge trapping occurs in the insulating tunnel oxide during erase operations, causing the cell to read a logic 0 although erased. This is a self-healing effect and usually detraps automatically in the quiescent period after an erase cycle. During endurance testing at Texas Instruments, the flash cells are continuously erased and rewritten. With a delay of at least one or two seconds between two erase/write cycles, the flash endurance increases significantly during the tests.

3.3 Cumulative Program Time

It is very easy to erase and program flash memory of a MSP430 with user-written software. A chapter explaining how to do this is in the Family User's Guides, and code examples for flash erase and programming are available at http://www.ti.com/msp430.

It is possible to program single bits, bytes, or words of MSP430 flash memory. The designer can also program any 16-bit word up to two times and, with this method, can change additional bits from logic 1 to 0. But the cumulative program time parameter limits the number of over-programming operations between two erase cycles.

Before programming flash by software, the input clock divider of the flash timing generator must be programmed to a correct value. The data sheet allows a flash timing generator frequency between 257 kHz and 476 kHz. Please check the data sheet for correct values for each MSP430 derivative.
The MSP430F1xx and MSP430F4xx data sheets also state that programming one flash cell (byte or word) needs 35 flash timing generator clock cycles. During these 35 clock cycles, the high voltage for flash programming internally is applied for only 29 clock cycles, 6 clock cycles less than the complete cycle.

The MSP430F2xx data sheets specify flash programming a higher speed, as only 30 clock cycles to program one flash cell are needed. For flash programming, the high voltage is only applied for 27 cycles, 3 cycles less than the complete programming cycle.

Each time a single bit, byte, or word is programmed, a complete row of 64-byte flash cells sees the high voltage necessary for programming. This high voltage generates some stress to the complete row of flash cells, and this stress must be time limited to avoid damage. The next erase cycle resets this stress time to zero, and the cumulative program time restarts again from the beginning. According to the data sheet, as shown in Table 3, this high-voltage stress must be limited to 10 ms between two erase cycles. See the data sheets for the correct values for each MSP430 derivative.

The same 16-bit flash word cannot be programmed more than twice before the next erase cycle. Writing to one 16-bit word with two byte-wise programming cycles counts as two programming cycles. Single-bit overprogramming is possible only once, if the flash cell previously has been programmed 16-bit word wise.

Writing to the same row too many times may result in write disturb, and erased bits will be programmed as well. This produces no physical damage and, after erase, the disturbed bits are programmable as before. No long term effects are known.

Table 3. Example of Cumulative Program Time in the Data Sheets

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>V<sub>CC</sub></th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative program time</td>
<td>(1)</td>
<td>2.7 V/3.6 V</td>
<td></td>
<td>10</td>
<td>ms</td>
</tr>
</tbody>
</table>

(1) The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods—individual word/byte write and block write modes.

The following examples show some scenarios and the influence of the cumulative program time on possible over-programming of one cell.

Example 1

The flash timing generator is programmed to its minimum frequency of 257 kHz. Under this condition, the high-voltage stress to program one single flash byte or word lasts for:

\[t_{\text{high voltage}} = \frac{1}{257 \text{ kHz}} \times 29 = 113 \mu\text{s} \]

This allows, within the cumulative program time of 10 ms/113 μs = 88 programming cycles for bits, bytes, or words. To program one flash row of 32 words (64 bytes) word wise, 32 programming cycles are necessary. After these 32 programming cycles, in this example, additional 56 programming cycles are left for programming additional bits of this flash row. Byte-wise programming needs 64 programming cycles for one flash row, and this leaves only 24 programming cycles for additional bit programming.

Example 2

The flash timing generator is programmed to its maximum frequency of 476 kHz. Under this condition, the high-voltage stress to program one single flash byte or word is:

\[t_{\text{high voltage}} = \frac{1}{476 \text{ kHz}} \times 29 = 61 \mu\text{s} \]

In this case, there is 10 ms/61 μs = 164 cycles for bit, byte, or word programming available, before the flash segment must be erased. Programming the 32 words of this flash line byte wise uses 64 cycles of the available 164 cycles. Hence, theoretically, 100 additional flash programming cycles are left to add additional logic 0 levels to this flash row. Because programming each word more than two times is not allowed, only another 64 cycles can be executed.

Programming flash in the block write mode is quicker and, therefore, leaves more time for single-bit over-programming operations within one flash row.
When using the digital controlled oscillator (DCO) as clock source for the flash timing generator, it is important to check the worse-case accuracy of the DCO frequency. In many MSP430 derivatives, the DCO frequency is very temperature dependent and also has some V_{CC} dependence. Therefore, it is good practice to select a flash timing generator frequency in the middle of the allowed range. If it is necessary to program the flash timing generator frequency close to one of its data-sheet limits, it is necessary to use an accurate clock source. Either a high-frequency crystal clock source or calibration of the DCO frequency using a 32-kHz crystal clock are options.

Programming the flash with a flash timing generator frequency outside the data-sheet specifications may give correct results at first but can lead to reduced data-retention time and affect flash reliability. Not following the cumulative programming time parameter may also result in bit failures and generally reduced reliability of the MSP430 flash memory.

4 Flash Enhancements With Software

4.1 EEPROM Emulation With Flash

The main MSP430 memory is divided into 512-byte flash segments. Depending on the family, MSP430 devices have either additional two segments with 128 bytes each or four segments with 64 bytes each. These smaller segments are called information memory. Both information memory and main memory are functionally equal and can be used to store program code and data. However, in most applications, it is convenient to use the main memory for program code and static constant values. The small information memory segments allow storage of nonvolatile variables, which easily can be modified at run time. Besides the small segment size, the high number of erase/write cycles (high flash endurance) allow emulation of an EEPROM and often make an external EEPROM unnecessary.

4.2 Enhancing Flash Data Retention Time With Flash Refresh

As explained in the previous section, data retention time is very much dependent on the ambient temperature of the MSP430 application. One possible solution to enhance flash data retention is refreshing the flash contents from time to time with software.

In an ideal scenario, the application has idle time frames, where no external events must be observed. During such an idle time, the software can copy one flash segment into RAM or any other flash segment. After erasing the original segment, the content is copied back into the original segment. After such a flash refresh cycle, the data retention time for this segment restarts.

Example: At 50°C, the data-retention time is reduced to 16 years only. In this case, a flash refresh every 16 years expands the data-retention time for another 16 years. With 100 000 erase/write cycles, the total data retention time in this scenario is expanded to 1.6 million years.

As mentioned in an previous section, the number of erase/write cycles (flash endurance) at higher temperatures is higher than at lower temperatures. Hence, the typical value of 100 000 erase/write cycles can be used for the calculation here.

[CAUTION]
The application must ensure that flash refresh of a flash segment is not interrupted by a power failure.

Failing V_{CC} after erasure of the flash sector containing the interrupt vector table leads to a complete failure of the application. Capacitive decoupling must ensure that, during the flash refresh cycle, the current for erasure and programming does not drop V_{CC} below the required erasure and programming voltage as specified in the data sheet.

If a power failure aborts a flash segment erase of flash programming process, this flash segment can be erased and reprogrammed.
4.3 Checking Flash Data With a Checksum or CRC

In safety critical applications, it is good design practice to verify the flash contents from time to time with the application software. The simplest method is a checksum across the complete flash memory. The memory check can be done each time the application is turned on. If an application is running for a long time, a memory check can be done every day, week, or month. It is not the focus of this application report to discuss the various options of checksum or CRC checks. There is available literature discussing this topic. For the MSP430, the CRC Implementation With MSP430 (literature number SLAA221) application report is available for download from http://www.ti.com/msp430.

5 Conclusion

Flash memory is a widely used, reliable and flexible nonvolatile memory to store software code and data in a microcontroller. However, as with any programmable and erasable memory, physical parameters must be understood, and the application must be designed accordingly to enable safe data storage over a long time. To ensure reliable operation of the application for a long time, data-retention time, flash endurance, and cumulative program time must be handled according to the data-sheet specifications. Occasionally checking the flash contents with a checksum or CRC enhances product reliability.

6 References

1. Y. Manabe, Detailed Observation of Small Leak Current in Flash Memories With Thin Tunnel Oxides, IEEE Std 1998, pp 95–99
4. CRC Implementation With MSP430 (SLAA221)
6. Kripasagar Venkat and Uwe Haensel, Understanding MSP430 Flash Data Retention (SLAA392)
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Telephony</td>
</tr>
<tr>
<td>RF/I and ZigBee® Solutions</td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated