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Abstract. Exhaustive search techniques such as model checking and
symbolic execution are insufficient to detect errors in concurrent pro-
grams. In this work we present an abstraction-guided symbolic execu-
tion technique that quickly detects errors in concurrent programs that
arise from thread schedules and input data values. An abstract system is
generated that contains a set of key program locations that are relevant
in testing the feasibility of a possible error in the program. We guide a
symbolic execution along locations in the abstract system in an effort to
generate a corresponding feasible execution trace to the error location.
A combination of heuristics are used to automatically rank thread and
data non-determinism in order to guide the execution. We demonstrate
empirically that abstraction-guided symbolic execution generates feasi-
ble execution paths in the actual system to find concurrency errors in a
few seconds where exhaustive symbolic execution fails to find the same
errors in an hour.

1 Introduction

The current trend of multi-core and multi-processor computing is causing a
paradigm shift from inherently sequential to highly concurrent and parallel ap-
plications. Certain thread interleavings, data input values, or combinations of
both often cause errors in the system. Systematic verification techniques such
as explicit state model checking and symbolic execution are extensively used to
detect errors in such systems [19, 41, 15, 22, 27].

Explicit state model checking enumerates all possible thread schedules and
input data values of a program in order to check for errors [19, 41]. Whereas
symbolic execution techniques substitute certain data values with symbolic val-
ues while all other values are concrete [22, 40, 27]. Explicit state model checking
and symbolic execution techniques used in conjunction with exhaustive search
techniques such as depth-first search are unable to detect errors in medium to
large-sized concurrent programs because the number of behaviors caused by data
and thread non-determinism is extremely large.

In this work we present an abstraction-guided symbolic execution technique
that efficiently detects errors caused by a combination of thread schedules and
data values in concurrent programs. The technique automatically identifies a set
of key program locations that can potentially lead to an error state in the system.



The symbolic execution is then guided along these locations in an attempt to
generate a feasible execution path to the error state. This allows the execution
to focus in parts of the behavior space that are more likely to contain an error
and decrease the total time required to detect errors.

A set of target locations that represent a possible error in the program is
provided as input to generate an abstract system. The input target locations
are either generated from static analysis warnings, imprecise dynamic analysis
techniques, or user-specified reachability properties. We automatically generate
an abstract system containing locations that are relevant in verifying the reach-
ability of the target locations using control and data dependence analyses. The
abstract system contains call sites, conditional branch statements, data defini-
tions, and synchronization points in the program that lie along control paths
from the start of the program to the target locations. The program locations in
the abstract system do not contain any thread information or data values.

We systematically guide the symbolic execution toward locations in the ab-
stract system in order to reach the target locations. A combination of heuristics
are used to automatically pick thread identifiers and input data values at points
of thread and data non-determinism respectively. The abstract system simply
provides locations of interest in reaching the target locations. We do not verify or
search the abstract system like most other abstraction refinement techniques [3,
18]. At points in the execution when we are unable to guide the program exe-
cution further along a sequence of locations (e.g. a particular conditional state-
ment) we refine the abstract system by adding program statements that re-define
the variables of interest.

We demonstrate in an empirical analysis, on benchmarked multi-threaded
Java programs and the JDK 1.4 concurrent libraries, that locations in the ab-
stract system can be used to generate feasible execution paths to the target lo-
cations. We show that the abstraction guided-technique can find errors in multi-
threaded Java programs in a few seconds where exhaustive symbolic execution
is unable to find the errors within a time bound of an hour.

2 Overview

A high-level overview of the technique is shown in Fig. 1.
Input: The input to the technique is a set of target locations, Lt, that repre-

sent a possible error in the program. The target locations can either be generated
using a static analysis tool or a user-specified reachability property. The lock-
set analysis, for example, reports program locations where lock acquisitions by
unique threads may lead to a deadlock [11]. In this case, the target locations are
the set of lock acquisition locations generated by the lockset analysis.

Abstract System: An abstraction of the program is generated using stan-
dard control and data dependence analyses on control flow graphs. Location l3 is
a single target location in Fig. 1. The possible execution of location l3 is control
dependent on the true branch of the conditional statement l2. Two definitions
of variable a at locations l0 and l1 reach the conditional statement l2; hence,
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Fig. 1. Overview of the abstraction-guided symbolic execution technique

locations l0, l1, and l2 are part of the abstract system because they are directly
relevant in testing the reachability of l3.

Abstraction-Guided Symbolic Execution: The symbolic execution is
guided along a sequence of locations (an abstract trace: 〈l0, l2, l3〉) in the abstract
system. The program execution is guided using heuristics to intelligently rank
the successor states generated at points of thread and data non-determinism.
The guidance strategy uses information that l3 is control dependent on the true
branch of location l2 and in the ranking scheme prefers the successor representing
the true branch of the conditional statement.

Refinement: When the symbolic execution cannot reach the desired target
of a conditional branch statement in an abstract trace, we refine the abstract
system and the abstract trace by adding program statements that re-define the
variables in the branch predicate. If we cannot generate the successor state for the
true branch of the conditional statement while guiding along 〈l0, l2, l3〉 in Fig. 1
then the refinement automatically adds another definition of a to the abstract
trace resulting in 〈l1, l0, l2, l3〉. It is possible that different threads define the
variable a at locations l1 and l0.

Output: When the guided symbolic execution technique discovers a feasible
execution path, the path describes various conditions that lead to the target
locations.

3 Program Model and Semantics

To simplify the presentation of the guided symbolic execution we describe a
simple programming model for multi-threaded and object-oriented systems. The
restrictions, however, do not apply to the techniques presented in this work
and the empirical analysis is conducted on Java programs. Our programs con-
tain conditional branch statements, procedures, basic data types, complex data
types supporting polymorphism, threads, exceptions, assertion statements, and



1: Thread A{
2: . . .
3: public void run(Element elem){
4: lock(elem)
5: check(elem)
6: unlock(elem)
7: }
8: public void check(Element elem)
9: if elem.e > 9

10: Throw Exception
11: }}

1: Thread B {
2: . . .
3:

public void run(Element elem){
4: int x /∗ Input Variable ∗/
5: if x > 18
6: lock(elem)
7: elem.reset()
8: unlock(elem)
9: }}

1: Object Element{
2: int e
3: . . .
4: public Element(){
5: e := 1
6: }
7: public void reset(){
8: e := 11
9: }}

(a) (b) (c)

Fig. 2. An example of a multi-threaded program with two threads: A and B.

an explicit locking mechanism. The threads are separate entities. The programs
contain a finite number of threads with no dynamic thread creation. The threads
communicate with each other through shared variables and use explicit locks to
perform synchronization operations. The program can also seek input for data
values from the environment.

In Fig. 2 we present an example of such a multi-threaded program with two
threads A and B that communicate with each other through a shared variable,
elem, of type Element. Thread A essentially checks the value elem.e at line 9
in Fig. 2(a) while thread B resets the value of elem.e in Fig. 2(b) at line 7 by
invoking the reset function shown in Fig. 2(c). We use the simple example
in Fig. 2 through the rest of the paper to demonstrate how the guided symbolic
execution technique works.

A multi-threaded program, M, is a tuple 〈Cs, Vc, Dsym〉 where Cs is a set of
threads {T0, T1, . . . , Tu−1}, Vc is a finite set of concrete variables, and Dsym is
a finite set of all data input variables in the system. Each thread, Ti, has an
unique identifier id where id → {0, 1, . . . , u− 1} and a set of local variables.

A runtime environment implements an interleaving semantics over the threads
in the program. The runtime environment operates on a program state s that
contains: (1) valuations of the variables in Vc, (2) for each thread, Ti, values
of its local variables, runtime stack, and its current program location, (3) the
symbolic representations and values of the variables in Dsym , and (4) a path
constraint, φ, (a set of constraints) over the variables in Dsym . The path con-
straint is represented in some first-order logic formula that can be solved using a
theorem prover or a constraint solver. The runtime environment provides a set
of functions to access certain information in a program state, s:

– getCurrentLoc(s) returns the current program location of the most recently
executed thread in state s.

– getLoc(s, i) returns the current program location of the thread with identi-
fier i in state s.

– getEnabledThreads(s) returns a set of identifiers of the threads enabled in
s. A thread is enabled if it is not blocked (not waiting to acquire a lock).



Given a program state, s, the runtime environment generates a set of suc-
cessor states, {s0, s1, . . . , sn}. To generate all successors of a given state, the
runtime environment systematically generates the successor states based on the
following rules ∀i ∈ getEnabledThreads(s) ∧ l := getLoc(s, i):

1. If l is a conditional branch with symbolic primitive data types in the branch
predicate, P , the runtime environment can generate at most two possible
successor states. It can assign values to variables in Dsym to satisfy the path
constraint φ ∧ P for the target of the true branch or satisfy its negation
φ ∧ ¬P for the target of the false branch.

2. If l accesses an uninitialized symbolic complex data structure osym of type T ,
then the runtime environment generates multiple possible successor states
where osym is initialized to: (a) null, (b) references to new objects of type T
and all its subtypes, and (c) existing references to objects of type T and all
its subtypes.

3. If neither rule 1 or 2 are satisfied, then the runtime environment generates
a single successor state obtained by executing l in thread Ti.

In the initial program state, s0, the current program location of each thread
is initialized to its corresponding start location while the variables in Dsym are
assigned a symbolic value v⊥ that represents an uninitialized value.

A state sn is reachable from the initial state s0 if using the runtime environ-
ment we can find a non-zero sequence of states 〈s0, s1, . . . , sn〉 that leads from
s0 to sn such that ∀〈si, si+1〉, si+1 is a successor of si for 0 ≤ i ≤ n− 1. Such a
sequence of program states represents a feasible execution path through the sys-
tem. The sequence of program states provides a set of concrete data values and
a valid path constraint over the symbolic values. The reachable state space, S,
can be generated using the runtime environment where S := {s | ∃〈s0, . . . , s〉}.

4 Abstraction

In this work we create an abstract system that contains program locations rel-
evant in checking the reachability of the target program locations and use the
abstraction to guide the symbolic execution. The control flow of the system and
dependence relationships between the program locations and the target locations
are used to construct the abstract system.

4.1 Background definitions

A control flow graph (CFG) of a procedure in a system is a directed graph 〈L,E〉
where L is a set of uniquely labeled program locations in the procedure while
E ⊆ L × L is the set of edges that represents the possible flow of execution
between the program locations. Each CFG has a start location lstart ∈ L and an
end location lend ∈ L.

For a system with p procedures the control flow of the entire system is 〈L, E〉
where L :=

⋃
0≤i≤p Li and E :=

⋃
0≤i≤pEi. We define the following functions to

access information about the locations and edges in the CFGs:



– start(l) returns true iff l is a start location.
– end(l) returns true iff l is an end location.
– callSite(l) returns true iff l is a call site that invokes a procedure.
– branch(l) returns true iff l is a conditional branch statement.
– aquireLock(l) returns true iff l acquires a lock.
– releaseLock(l, l′) returns true iff l releases a lock that is acquired at l′.
– callEdge(l, l′) returns true iff callSite(l) ∧ start(l′)∧ l invokes l′.

There are two kinds of paths that denote the control flow in the system: a
path within a CFG (intraprocedural path) and a path across different CFGs
(interprocedural path). An intraprocedural or interprocedural path is simply
a non-zero sequence of locations (q := 〈li . . . , li+n〉) that satisfies certain con-
ditions. The intraprocedural and interprocedural paths are defined using the
following functions respectively:

– cfgPath(li, ln) returns true iff ∃〈li, . . . , ln〉, (lj , lj+1) ∈ E for i ≤ j ≤ n− 1.
– icfgPath(li, ln) returns true iff ∃〈li, . . . , ln〉, (lj , lj+1) ∈ E∨callEdge(lj , lj+1)

for i ≤ j ≤ n− 1.

The icfgPath function describes a path between two locations across differ-
ent procedures that does not contain any return (lend) locations; it is a sequence
of calls required to reach a particular procedure.

Data and control dependences are an integral part in constructing the ab-
stract system. The dependence analyses are defined along intraprocedural paths
in the CFG. Data dependence is primarily based on reaching definitions; whereas
control dependence is determined by whether the outcomes of branch predicates
in conditional statements affect the reachability of certain locations. We define
the following functions for the dependence analyses as:

– postDom(li, ln) returns true iff ∀〈li, . . . , lm〉, cfgPath(li, lm)∧end(lm)∧∃(lj ==
ln) for i+ 1 ≤ j ≤ m.

– defines(l, v) returns true iff l defines variable v.
– uses(l, v) returns true iff l uses variable v.
– reaches(li, ln) returns true iff ∃〈li, . . . , ln〉, cfgPath(li, ln)∧defines(li, v)∧
¬defines(lj , v) ∧ uses(ln, v) for i+ 1 ≤ j ≤ n− 1.

– controlD(li, ln) returns true iff ∃〈li, . . . , ln〉, cfgPath(li, ln) ∧ branch(li) ∧
postDom(lj , ln) ∧ ¬postDom(li, ln) for i+ 1 ≤ j ≤ n− 1.

4.2 Abstract System

The locations in an abstract system, A, are a subset of the locations in the
control flow of the entire system. The abstract system contains locations that are
call sites, conditional branch statements, data definitions, and synchronization
operations that lie along control paths from the start of the program to the
target locations.

The abstract system is a directed graph A := 〈Lα, Eα〉 where Lα ⊆ L is the
set of program locations while Eα ⊆ Lα × Lα is the set of edges. The abstract



system is constructed based on the set of input target locations Lt and the CFGs
of the system 〈L, E〉. We initialize the set of abstract locations, Lα, with the set
of target locations Lt and the set of all possible start locations of the program
Ls. The set Ls contains the start location of each thread, Ti, in the system. We
initialize the set Lα := Lt ∪Ls and iteratively add locations, l ∈ L, to Lα if one
of the following four equations is satisfied. We continue to add locations until we
reach a fixpoint, re-evaluating the four equations each time a location is added.

∃lt ∈ Lt, ls ∈ Ls, l′ ∈ L, [icfgPath(l, lt) ∧ icfgPath(l′, lt)]∧
[icfgPath(ls, l) ∧ icfgPath(ls, l′)] ∧ [callEdge(l, l′) ∨ callEdge(l′, l)] (1)

The call sites are added to Lα one at a time by satisfying Eq. (1); the call sites
are part of method sequences such that invoking a particular sequence leads from
the start of the program to a procedure containing a target location. In addition
to the call sites, start locations of the procedures invoked by the call sites are
also added one at a time to the set of locations Lα when Eq. (1) evaluates to
true.

∃lα ∈ Lα, l′ ∈ L, [cfgPath(l, lα) ∧ cfgPath(l′, lα)]∧{
[cfgEdge(l, l′) ∧ controlD(l, l′) ∧ controlD(l, lα)]∨ (2)

[cfgEdge(l′, l) ∧ controlD(l′, l) ∧ controlD(l′, lα)]
}

Conditional branch statements that determine the reachability of the loca-
tions that are already present in the abstract system are added to Lα when-
ever Eq. (2) is satisfied. The branch statements that result from any nested
control dependence are also added. Furthermore, the immediate target of a con-
ditional branch statement is added when Eq. (2) evaluates to true where the
execution of the target depends on the same branch outcome as lα. This allows
the desired target of the branch to be encoded in the abstract trace.

∃lα ∈ Lα, cfgPath(l, lα) ∧ defines(l, v)∧ (3)
isBranch(lα) ∧ uses(lα, v) ∧ reaches(l, lα)

Locations that define variables used in branch predicates at the conditional
statements in Lα are added if Eq. (3) is satisfied. To compute the reaching
definitions we conservatively compute the alias information based on the notion
of maybe an alias. If two variables in a given procedure can be aliases of one
another we assume they are aliases. In the reaches function the alias information
is only propagated along a path in the CFG; in other words at an intraprocedural
level (single procedure). The alias computation does not consider aliases among
variables passed as parameters to different procedures. This restriction allows
us to generate a smaller set of locations in the abstract system and we rely on
refinement to find other definitions if/when they are needed.

∃lα ∈ Lα, [cfgPath(l, lα) ∧ acquireLock(l)]∨ (4)
[cfgPath(lα, l) ∧ releaseLock(l, lα)]
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Fig. 3. The abstract system for Fig. 2: (a) Initial Abstract System. (b) Additions to
the abstract system after refinement.

Eq. (4) adds locations for synchronization operations. Locations where locks
are relinquished corresponding to the lock acquisition locations are also added
to Lα using the releaseLock function.

Termination: Loops and recursive procedure calls can cause cyclic depen-
dencies between different branch statements, data definitions, and call sites.
Program locations that are part of cyclic dependencies, however, are added only
once to Lα since Lα is a set of unique locations; this guarantees termination.

Finally, edges are added between the different locations in the abstract sys-
tem. An edge between any two locations lα and l′α in Lα is added to Eα if
either Eq. (5) or Eq. (6) evaluates to true.

∃〈lα, li, . . . , ln, l′α〉, cfgPath(lα, l′α) ∧ lj 6∈ Lα for i ≤ j ≤ n (5)

callEdge(lα, l′α) (6)

The abstract system for the example in Fig. 2 where the target location is
line 10 in the check method in Fig. 2(a) is shown in Fig. 3(a). Locations l0 and
α0 in Fig. 3(a) are the two start locations of the program. The target location, l5,
represents line 10 in Fig. 2(a). Location l2 is a call site that invokes start location
l3 that reaches target location l5. The target location is control dependent on
the conditional statement at line 9 in Fig. 2(a); hence, l4 is part of the abstract
system in Fig. 3(a). The locations l1 and l6 are the lock and unlock operations.
The abstract system shows Thread B is not currently relevant in testing the
reachability of location l5.

4.3 Abstract Trace Set

The input to the guided symbolic execution is an abstract trace set. The abstract
trace set contains sequences of locations generated on the abstract system, A,
from the start of the program to the various target locations in Lt. We refer to



the sequences generated on the abstract system as abstract traces to distinguish
them from the sequences generated on the CFGs. To construct the abstract
trace set we first generate intermediate abstract trace sets, {P0, P1, . . . Pt−1},
that contain abstract traces between start locations of the program (Ls) and the
input target locations (Lt). For each target location, li ∈ Lt, we use Eq. (7) to
create a set of abstract traces, Pi, where each abstract trace leads from the start
of the program to li.

∀l0 ∈ Ls, Pi := {〈l0, l1, . . . , li〉 | lj 6= lk, 〈ll, ll+1〉 ∈ Eα
for j 6= k and 0 ≤ j, k ≤ i and 0 ≤ l ≤ i− 1} (7)

Eq. (7) generates traces of finite length in the presence of cycles in the ab-
stract system caused by loops, recursion, or cyclic dependencies in the pro-
gram. Eq. (7) ensures that each abstract trace generated does not contain any
duplicate locations by not considering any back edges arising from cycles in the
abstract system. We rely on the guidance strategy to drive the program execu-
tion through the cyclic dependencies toward the next interesting location in the
abstract trace; hence, the cyclic dependencies are not encoded in the abstract
traces that are generated from the abstract system.

Each intermediate abstract trace set, Pi, contains several abstract traces from
the start of the program to a single target location li ∈ Lt. We generate a set of
final abstract trace sets:

ΠA := {{π0, . . . , πt−1}|π0 ∈ P0, . . . , πt−1 ∈ Pt−1}

Each Πα ∈ ΠA contains a single abstract trace from the start of the program
to a target location. In essence, Πα := {πα0 , πα1 , παt−1} where each παi ∈ Πα

is an abstract trace from the start of the program to a unique li ∈ Lt and
|Πα| = |Lt|.

The input to the guided symbolic execution technique is Πα ∈ ΠA. The
different abstract trace sets in ΠA allow us to easily distribute checking the
feasibility of individual abstract trace sets on a large number of computation
nodes. Each execution is completely independent of another and as soon as we
find a feasible execution path to the target locations we can simply terminate
the other trials.

In the abstract system shown in Fig. 3(a) there is only a single target
location—line 10 in check procedure shown in Fig. 2(a). Furthermore, the ab-
stract system only contains one abstract trace leading from the start of the pro-
gram to the target location. The abstract trace Πα is a singleton set containing
〈l0, l1, l2, l3, l4, l5〉.

5 Guided Symbolic Execution

We guide a symbolic program execution along an abstract trace set, Πα :=
{π0, π1, . . . , πt−1}, to construct a corresponding feasible execution path, Πs :=
〈s0, s1, . . . , sn〉. For an abstract trace set, the guided symbolic execution tries



1: /∗ backtrack := ∅, Aα := Πα, s := s0, trace := 〈s0〉 ∗/
procedure main()
2: while within time bound() and 〈s,Πα, trace〉 6= null do
3: 〈s,Πα, trace〉 := guided symbolic execution(s,Πα, trace)
4:

procedure guided symbolic execution(s,Πα, trace)
5: while ¬(end state(s) or depth bound(s)) do
6: if goal state(s) then
7: print trace exit
8: 〈s′, Ss〉 := get ranked successors(s, Πα)
9: for each sother ∈ Ss do

10: backtrack := backtrack ∪ {〈sother , Πα, trace ◦ sother 〉}
11: if ∃ πi ∈ Πα, head(πi) == getCurrentLoc(s) then
12: lα := head(πi) /∗ First element in the trace ∗/
13: l′α := head(tail(πi)) /∗ Second element in the trace ∗/
14: if branch(lα) ∧ (l′α 6= getCurrentLoc(s′)) then
15: return 〈s0, Aα := refine trace(Aα, πi), 〈s0〉〉
16: remove(πi, lα) /∗ Update Trace ∗/
17: s := s′, trace := trace ◦ s′
18: return 〈s′, Πα, trace〉 ∈ backtrack

Fig. 4. Guided symbolic execution pseudocode.

to generate a feasible execution path that contains program states where the
program location of the most recently executed thread in the state matches a
location in the abstract trace. The total number of locations in the abstract trace
is m :=

∑
πi∈Πα length(πi) where the length function returns the number of

locations in the abstract trace πi. In our experience, the value of m is a lot
smaller than n, m << n where n is the length of the feasible execution trace
corresponding to Πα because the abstract traces contain large control flow gaps
between two locations in the abstract trace. Intermediate program locations are
not included in the abstract system or the resulting abstract traces.

The pseudocode for the guided symbolic execution is presented in Fig. 4.
On line 1 we initialize the backtrack set as empty, store a copy of the in-
put abstract trace set Πα in Aα, set program state s to the initial program
state s0, and add s0 to the feasible execution trace. On line 3, main invokes
guided symbolic execution where the values of the elements in the tuple are
〈s0, Πα, 〈s0〉〉. A time and depth bound are specified by the user as the termina-
tion criteria of the symbolic execution.

The guided symbolic program execution is a greedy depth-first search that
picks the best immediate successor of the current state and does not consider
unexplored successors until it reaches the end of a path and needs to back-
track. The search is executed along a path in the program until it reaches
an end state (a state with no successors), a user-specified depth bound (line
5), a user-specified time bound (line 2), or the goal state (line 6). In the goal
state, s, there exists a unique thread at each target location (∀li ∈ Lt,∃j ∈
getEnabledThreads(s), getLoc(s, j) == li). If the state s is the goal state (line
6) then the feasible execution trace is printed before exiting the search. In this



scenario we are successfully able to find a corresponding execution trace that
includes each location in the abstract trace set. The guided symbolic execu-
tion technique is guaranteed to terminate even if the goal state is not reachable
because it is depth and time bounded.

States are assigned a heuristic rank in order to intelligently guide the program
execution. The get ranked successors function returns a tuple 〈s′, Ss〉 on line
8 in Fig. 4 where s′ is the best ranked successor of state s while all the other
successors are in set Ss. Each sother ∈ Ss is added to the backtrack set with
the abstract trace set and the feasible execution trace (lines 9 and 10). The
feasible execution trace added to the backtrack set with sother denotes a feasible
execution path from s0 to sother . The best-ranked state s′ is assigned as the
current state and the feasible execution trace is updated by concatenating s′ to
it using the ◦ function (line 17).

In order to match a location in the abstract trace set to a program state, the
algorithm checks whether the program location of the most recently executed
thread in state s matches the first location in an abstract trace, πi ∈ Πα (line
11). The head function returns the first element of the input abstract trace. The
tail function returns the input abstract trace without its head. Location lα is
the first location in πi while l′α is the immediate successor of lα. Location lα is
removed from the abstract trace (line 16) if refinement is not needed. Removing
lα updates πi and in turn updates Πα. The execution now attempts to match
the location of the most recently executed thread in the current state toward
the next location in πi by directing the search.

The abstract trace set is immediately refined when the program execution is
unable to execute the program along the desired target of a conditional branch
statement in an abstract trace πi on line 15 in Fig. 4. The refinement is invoked
when the current values of the variables in the branch predicate lα do not result
in the desired successor s′ of s. The refinement is performed on the abstract
trace set Aα (a copy of the original unmodified abstract trace set Πα). After
the refinement the search is restarted from the initial program state s0 and the
updated abstract trace set Aα. The details on the refinement process are given
in Section 6.

The get ranked successors(s,Πα) in Fig. 4 takes as input a program state
s and the abstract trace set Πα. The runtime environment generates a set of
successors {s′0, s′1, . . . , s′x} for the program state s. For each successor state s′i,
we compute its heuristic value using a two-tier and data ranking scheme. The
two-tier ranking scheme has been described in earlier works [32, 33] while ranking
the data non-determinism is new to this work.

First-level Rank: h1(s′i) :=
∑
πj∈Πα length(πj) is the first level rank of

the program state. Intuitively, program states along execution paths that corre-
spond to more locations from the input abstract trace set are ranked better than
others [32]. States with lower heuristic values are ranked higher. The second-level
rank is used to prioritize the states that have the same first-level rank

Second-level Rank: The second-level rank of s′i is an estimate of the dis-
tance from the program state to the next program location in any of the abstract



1: abstract class O
2:
3: class A extends O

procedure myFunc()
4: {. . .}
5: Class B extends O

procedure myFunc()
6: {. . .}

objsym .myFunc()

A.myFunc()

O objsym

objects
existingnew B()new A()null

(a) (b) (c)

Fig. 5. Ranking data non-determinism for complex data structures. (a) Classes A and
B inherit from classO. (b) Locations in an abstract trace. (c) Different non-determinism
choices for obj sym of type O.

traces in Πα [33]. We get the set of next program locations of all the abstract
traces and the current program location of s′i: Lp := {l | head(πj), πj ∈ Πα} and
la := getCurrentLoc(s′i). The distance heuristic generates a set of all possible
paths, Q, between la and ∀lb ∈ Lp on the CFGs 〈L, E〉.

The paths in q satisfy: ∀qk ∈ Q, ∀(l, l′), cfgEdge(l, l′) ∨ callEdge(l, l′) ∨
end(l) and l returns to l′). The last disjunct essentially accounts for paths along
return statements. The distance heuristic generates a finite number of paths
even in the presence of looping constructs and recursive procedures by short-
circuiting the path when it detects a cycle. The final estimate minimizes the
estimates across the different paths: h2(s′i) := length(qmin ∈ Q). The details of
the heuristic computation are provided in [33].

Ranking Data Non-Determinism: New in this work we rank the non-
deterministic choices that are generated for complex input data structures. We
rank s′i at a point of complex data non-determinism for some object obj sym . If
there exists in an abstract trace in Πα a call site l where obj sym is the object that
invokes the procedure containing the start location l′, then we prefer successor
states where obj sym is initialized to objects of type T := getClass(l′). The
getClass function returns the class containing the program location l′. The
h3(s′i) := 0 if obj sym points to an object of type T ; otherwise, h3(s′i) := 1. The
information in the abstract trace allows us to intelligently pick objects of types
that lead to the target location.

Consider the program shown in Fig. 5(a). Two classes A and B inherit from
the abstract base class O and implement the myFunc method. Suppose the se-
quence shown in Fig. 5(b) is part of an abstract trace where obj sym is a symbolic
object of type O that invokes the myFunc method in class A. Consider the exam-
ple shown in Fig. 5(c). There is a non-deterministic choice for a new instance of
class A or B when accessing an uninitialized object of type O. The new object
can also be existing objects of type A and B to account for aliasing. The exam-
ple in Fig. 5(b) shows that the obj sym .myFunc call needs to invoke the myFunc
method in class A and assign a lower heuristic value to the state.



procedure refine trace(Aα, πi)
1: lbranch := head(πi)
2: Lv := {lv | defines(lv, v)}
3: Lα := Lα ∪ Lv, Recompute the fixpoint for A (Section 4.2)
4: πv := get abstract trace(Lv)
5: πpre := 〈l0, . . . , lk〉 such that ∃〈l0 . . . lk〉 ◦ πi ∈ Aα
6: if ∃la ∈ πpre , lb ∈ πv, same lock(la, lb) then
7: πv := πv ◦ l′b where releaseLock(l′b, lb)
8: πnew := πv ◦ πpre

9: Aα.replace trace(πpre ◦ πi, πnew ◦ πi)

Fig. 6. Refinement pseudocode.

6 Refinement

The refinement process is invoked when the symbolic execution cannot reach
the target of the branch statement in an abstract trace, πi . The variables in
the branch predicate can either be concrete, symbolic, global, or thread-local. In
an effort to execute the needed branch condition in the abstract trace we add
locations in the abstract system that redefine variables in the branch predicate.
The algorithm for refine trace(Aα, πi) is shown in Fig. 6. We define some
additional functions that are used to describe the refinement process.

– same lock(la, lb) returns true iff acquireLock(la) ∧ acquireLock(lb) such
that la and lb acquire the lock on the same object.

– get abstract trace(Lv) returns an abstract trace from the start of a pro-
gram to lv ∈ Lv.

– Πα.replace trace(πi, πj) substitutes πi with πj in the abstract trace set
Πα.

The refinement process is shown in Fig. 6. The first element of the abstract
trace, πi, is a branch statement as assumed on line 1 of Fig. 6. To generate a set
of program locations, Lv, on line 2 we select locations where thread-local and
global variables in the branch predicate are redefined. We use an interprocedural
data flow analysis to generate Lv. We compute an alias analysis through different
procedures to check if variables passed to different procedures can alias the same
object. We also compute the reaches definition along interprocedural paths.
Note this more expensive data flow analysis is invoked on a need-to basis in
the refinement phase when the original intraprocedural data flow analysis was
insufficient to generate the key locations in determining the reachability of the
target locations.

The fixpoint for the abstract system, A, is recomputed to add the loca-
tions that are relevant in checking the reachability of all lv ∈ Lv. The abstract
system is now modified and contains a new set of locations and edges. The
get abstract trace returns an abstract trace in the abstract system from the
start of the program to some location in Lv. We randomly pick a lv ∈ Lv and
generate an abstract trace from the start of the program to lv in A. When there



are multiple abstract traces to lv then we, again, randomly pick an abstract
trace.

The abstract trace set Aα is updated with a new abstract trace that contains
additional locations leading to the definition of a variable used in the branch
predicate. In Fig. 6, πv := 〈l0, . . . , lv〉 is an abstract trace from the start of the
program to location, lv, that defines a variable in the branch predicate. The
abstract trace πpre is the prefix of the trace πi in the original abstract trace set.
The prefix denotes the sequence of locations from the start of the program up
to, and not including, the conditional branch statement that cannot reach the
desired target.

In order to generate the replacement abstract trace we check the lock depen-
dencies between πpre and πv. If πpre and πv acquire the lock on the same object
(line 6), then we add the corresponding lock relinquish location to πv (line 7).
Adding the lock relinquish location ensures that if one thread acquires a lock to
define a variable in the branch predicate, then after the definition another thread
is not blocked trying to acquire the same lock to reach the conditional statement.
A new prefix, πnew , is essentially created by combining πv and πpre . This opera-
tion adds to the abstract trace the definition of a variable in the branch predicate
before the conditional statement. Finally we replace in the abstract trace set Aα
the abstract trace corresponding to πpre ◦ πi with πnew ◦ πi (line 9). The guided
symbolic execution is now restarted from the initial program state s0 and guided
along the updated abstract trace set.

Suppose,Aα := {〈l0, l1, l2, l3, l4, l5〉} and πi := 〈l4, l5〉 for the example in Fig. 2.
In the runtime environment we have found a feasible execution trace that visits
locations l0 to l3, but at the conditional branch l4 the execution cannot reach
the desired target location l5. The refinement process shown in Fig. 6 adds new
locations and edges shown in Fig. 3(b) to the abstract system in addition to
the ones shown in Fig. 3(a). In Fig. 3(b) location α5 defines the integer field,
e, of the shared variable elem; πv := 〈α0, α1, α2, α3, α4, α5〉 such that the se-
quence leads from the start of the program to α5 in Thread B. The prefix of πi is
πpre := 〈l0, l1, l2, l3〉. Locations l1 and α2 in Fig. 3(a) and Fig. 3(b) respectively
acquire the lock on the same object elem; hence, we add the lock release location
to πv := πv ◦α6. Finally the guided symbolic execution is restarted from s0 and
Aα := {πv ◦ πpre ◦ πi}.

The refinement process can be invoked repeatedly for the same branch con-
dition it is possible the same definition of the variable is added multiple times.
Such a scenario allows us to handle the cases where the variable needs to be
over a certain value in the branch predicate and its value is incremented by
some variable or constant in the definition. The refinement strategy is in itself
a heuristic. Developing and evaluating other refinement strategies is a work in
progress.



Error Type SLOC Time Trace Memory
(secs) Sets MB

Reorder Reachability 44 0.28 5 1.93 MB

Airline Reachability 31 0.30 3 1.58 MB

VecDeadlock0 Deadlock 7267 1.21 5 38 MB

VecDeadlock1 Deadlock 7169 0.98 17 38 MB

VecRace Race 7151 0.92 8 39 MB

Table 1. Information on models and abstract trace generation.

7 Experimental Results

We conduct experiments on machines with 8 GB of RAM and two Dual-core Intel
Xeon EM64T processors (2.6 GHz). We use the symbolic extension of the Java
PathFinder (JPF) v4.1 model checker with partial order reduction turned on [27].
JPF uses a modified JVM that operates on Java bytecode. The abstraction-
refinement and the heuristic computation processes are also performed on the
Java bytecode. This allows us to model any libraries used by the program as
part of the multi-threaded system.

We present an empirical study on five multi-threaded Java programs shown
in Table 1. The Reorder and the Airline model are benchmarked examples
while the VecDeadlock0, VecDeadlock1, and VecRace are examples that use
the JDK 1.4 synchronized Vector library in accordance with the documentation.
The programs are part of the JPF examples repository and can be obtained by
downloading JPF from [21]. We use Jlint to automatically generate warnings on
possible deadlocks and race-conditions in the synchronized Vector library [2].
The Reorder and Airline programs have user-defined reachability properties.
The errors in the Vector library are caused by a combination of data values and
thread schedules. For each program, in Table 1, we show the type of error, source
lines of code (SLOC), total time taken in seconds to generate the set of abstract
traces (Time), total number of abstract trace sets tested (Traces Sets), and total
memory used (Memory). The parameters with the program names indicate the
thread configuration of a particular program. Each parameter represents the
total number of symmetric threads in the system.

Picking Abstract Traces: A large number of abstract trace sets can be
generated from the abstract system. To pick the initial abstract trace sets we
choose sets that contain traces with the smallest number of call sites leading
from the start of the program to each target location. Several abstract trace sets
may contain the smallest number of call sites. In Table 1, the number of abstract
trace sets reported are the ones generated for the smallest number of call sites.
For the programs used in this empirical study, we were able to discover the goal
state by simply using the initial abstract trace sets.

We present in Table 2 the results for generating a concrete feasible execution
trace corresponding to an abstract trace for the programs used in our empirical
study. The guided symbolic execution trials for the different abstract trace sets
reported in Table 1 are launched in parallel on different computation nodes since



Model States Time Memory Total trace Total
secs MB Length Refinements

Reorder (9,1) 205 0.874 7MB 13 1

Reorder (10,1) 239 0.875 7MB 13 1

Airline (15,3) 619 0.548 5MB 3 13

Airline (20,2) 1230 0.521 6MB 3 19

Airline (20,1) 1248 0.498 6MB 3 20

VecDealock0 37 1.003 66MB 14 1

VecDeadlock1 294 1.005 69MB 15 2

VecRace 312 1.032 65MB 12 1

Table 2. Effort in error discovery and abstract trace statistics.

each trial is completely independent of the other trials. When a feasible execution
trace is generated along an abstract trace set, we terminate the other trials. We
present the total number of states generated, total time taken, and total memory
used in the trial that generates a feasible execution trace corresponding to the
abstract trace set. We also show the length of the initial trace (

∑
πi∈Πα |πi|) and

total number of refinements performed on the abstract trace; Πα is the input
abstract trace set.

The results in Table 2 indicate that the guided symbolic execution tech-
nique can quickly generate a concrete feasible execution to a corresponding
abstract trace. In the VecDeadlock0, the technique only generates 37 states
and takes about 1 second to find the deadlock in the program. Similarly in
the VecDeadlock1 and VecRace programs, the guided symbolic execution only
generates a few hundred states before generating a concrete trace to the error.
Exhaustive symbolic execution using a depth-first search is unable to discover
the errors in the programs used in the empirical study within a time bound of
one hour.

In the examples shown in Table 2 most models require only one or two refine-
ments to find the goal state. In these models one or two perturbations to global
variables were required to elicit the errors in the system. A related heuristic, the
iterative context-bounding approach bounds the number of preemptions along a
certain path in order to reach the error faster [23]; however, for the configurations
of the models used in this study the iterative context-bounding approach with a
preemption bound of two, the Chess concurrency testing tool was unable to find
the error in a time-bound of one hour even with no data non-determinism [24].
Note that we created corresponding C# programs. The Airline model required
a larger number of refinements because the reachability of the target location
depends on the value of a global counter that is modified by different threads. In
this case even with the correct number of preemptions as the input the iterative
context-bounding approach was unable to discover an error. ConTest, [12], was
also unable to find an error in the models with the thread configurations used
in the empirical study in a 1000 trails (these experiments too were conducted in
the absence of data non-determinism).



8 Related Work

Recent work by Tomb et al. uses symbolic execution to generate concrete paths
to null pointer exceptions at an inter-procedural level in sequential programs [40].
In contrast, concolic testing executes the program with random concrete values
in conjunction with symbolic execution to collect the path constraints over input
data values [36, 35]. The cost of constraint solving in concolic testing to achieve
full path coverage in a concurrent system is extremely high. The techniques
presented in this work are complementary to concolic testing. The techniques
can also be used to efficiently guide concolic testing.

Recent work shows that guiding the concrete program execution along a
sequence of manually generated program locations relevant in verifying the fea-
sibility of the target location dramatically lowers the time taken to reach the
target location [32]. The manual aspect of generating relevant program loca-
tions is tedious and sometimes intractable.

Race-directed random testing of concurrent programs uses the output of im-
precise dynamic analysis tools and randomly drives threads to the input loca-
tions [34]. The work in [32] shows that guiding the search through key locations
relevant in determining the target locations yields significantly better error dis-
covery rates.

Dynamic analysis tools such as ConTest use heuristics to randomly add per-
turbations in the thread schedules [12]. The results are similar to those obtained
with just a stateless random search and it is not very effective in error discovery.
Chess is a concurrency testing tool that systematically explores thread sched-
ules in C# programs and supports iterative context bounding [23]. These tools
only report feasible errors but they require a closed environment and cannot
handle data non-determinism. Note that there are imprecise dynamic analysis
techniques that also report possible errors in the system. The output of such
tools can also be used to generate input for the abstraction-guided symbolic
execution technique.

Check ‘n’ Crash, [5], is a hybrid test technique that uses a constraint solver
to generate concrete test cases based on the output from the static analyzer
tool—ESC/Java. Check ‘n’ Crash, however, only generates test cases for safety
violations in sequential programs. DSD crasher [6], extends Check ‘n’ Crash
by adding information from a runtime analysis tool to ESC/Java to improve
its analysis. It too is, however, limited to generating test cases for sequential
programs.

Static analysis techniques ignore the actual execution environment of the
program and reason about errors by simply analyzing the source code of the
program. Warlock and ESC/Java are two static analysis tools that rely heavily on
program annotations to find deadlocks and race-conditions [38, 14]. Annotating
existing code is cumbersome and time consuming. FindBugs and JLint look for
suspicious patterns in Java programs [20, 2]. Error warnings reported by static
analysis tools have to be manually verified which is difficult and sometimes not
possible.



Model checking is a formal approach for systematically exploring all pos-
sible behaviors of a concurrent software system [19, 28, 41, 3]. The state space
explosion problem renders it intractable in verifying medium to large-sized pro-
grams. Partial order reduction techniques have been used to partially overcome
the explosion in the state-space of the system due to thread-schedules [13]. Such
reductions are complementary to the technique presented in this paper. In our
experimental results we rank the thread schedules with dynamic partial order
reduction turned on.

Conservative abstractions are applied to high-level programming languages [18,
3] in order to verify programs. The abstraction is iteratively refined if it gen-
erates an infeasible counter-example to an error state. Counter-example guided
abstraction refinement techniques are successful in verifying sequential programs;
however, they are not effective for testing concurrent programs. In this work, we
use the abstraction to guide the execution of the program and do not verify
the abstraction itself—a key difference between the abstraction-guided symbolic
execution technique and other abstraction-refinement techniques.

Heuristics have extensively been used for error detection in program and sys-
tem verification. Hamming distance heuristics presented by Yang and Dill use
the explicit state representation to estimate a bit-wise distance between the cur-
rent state and an error state [42]. Edelkamp, Lafuente, and Leue implemented a
property based heuristic search which considers the minimum number of changes
required to the variables in the property in order for the property to be violated.
This information is used to estimate the distance to the error [8]. This heuristic
was refined using a Bayesian meta-heuristic by Seppi, Jones and Lamborn [37].
The heuristics in the FLAVERS tool uses the structure of the property to guide
the search [39]. The property based heuristics are not very effective for finding
errors in object-oriented multi-threaded Java and C# programs because a large
number of operations in the program do not directly affect the property being
verified.

The heuristics in [16] exploit the properties of Java programs to find con-
currency errors. A variety of domain specific heuristics are proposed to find
different concurrency errors; for example, the most-blocked heuristic prefers
states with a greater number of blocked threads in order to find deadlocks, while
the prefer-thread heuristic allows the user to specify a set of threads whose
execution will be preferred over the other threads. The prefer-thread heuris-
tic is effective for error discovery in certain programs where exhaustive model
checking techniques fail to find an error as shown in [31]; however, a considerable
manual effort is expended while configuring the correct parameters required for
error discovery in the models.

Distance heuristics are structural heuristics that have been extensively eval-
uated in this work, [10, 4, 29, 30]. In essence, the success of these heuristics lie
in the fact that they exploit the structure of the program to drive the pro-
gram execution toward a set of interesting locations either specified by the user
or generated using static/dynamic analysis techniques. The combination of dis-
tance estimate heuristics with the meta heuristic that guides the search along



a sequence of program locations is considerably successful in detecting errors
in multi-threaded programs [32]. The sequence of program locations generated
manually essentially represents an abstract trace through the program while the
distance heuristic enables us to find a corresponding feasible concrete execution
path.

There are other related guided techniques that use different abstract traces
and guidance strategies for either error discovery or optimal counter-example
generation. The trail directed model checking generates a concrete counter-
example to the error state using a depth-first search and uses the counter-
example produced to guide the search toward an optimal counter-example [9].
The goal of the distance heuristic presented in this paper with the meta heuris-
tic, [32], is to discover errors in programs where exhaustive search techniques
such as depth-first search fail.

The deterministic execution technique uses a sequence of relevant data input
to execute branch conditions, thread schedules, and method sequences generated
manually by a tester to check whether an error exists in concurrent Java pro-
grams [17]. This, however, requires a significant amount of manual effort. The
distance heuristic can intelligently rank thread schedules to drive certain threads
along a small sequence of interesting locations.

Using an abstraction to guide a concrete execution of the system has also
been explored in hardware verification. One approach generates a trace on an
abstract model created using a set of initial boolean variables to represent the
transition relation [25]. Next, a guided simulation using pseudo random number
vectors guides the simulation of the concrete model to find a concrete counter-
example. It refines the abstraction by adding more boolean variables. This work,
however, is limited to verifying circuit designs and boolean programs. Other
approaches use different abstraction and guidance techniques but, again, are
limited to boolean programs [26].

Another area of related work is the use of abstract databases and heuristics
that are used to guide the searches in planning problems [7].

9 Conclusions and Future Work

In this work we present an abstraction-guided symbolic execution technique that
efficiently detects errors caused by thread schedules and data values in concur-
rent programs. Based on a set of input target locations the technique automat-
ically generates an abstract system that contains relevant locations in checking
the reachability of the target locations. The symbolic execution is guided along
traces in the abstract system to generate a corresponding feasible execution path
to the target locations. Heuristics are used to efficiently rank thread and data
non-determinism to guide the symbolic execution along the locations in the ab-
stract system. We empirically show that the abstraction-guided refinement tech-
nique can find errors in multi-threaded Java programs in a few seconds where
exhaustive search techniques are unable to find errors within a time bound of
an hour.



In the case when we are unable to discover a feasible execution path, we want
to design a probabilistic measure to estimate the likelihood of the reachability
of the target locations as future work. Another avenue of future work consists
of studying more precise refinement techniques based on compositional symbolic
execution [1].
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