
1

Abstract. Recent advances in parallel model checking
for liveness properties achieve significant capacity in-
creases over sequential model checkers. However, the ca-
pacity of parallel model checkers is in turn limited by
available aggregate memory and network bandwidth. We
propose a new parallel algorithm that sacrifices complete
coverage for increased capacity to find errors. The al-
gorithm, called BEE (for bee-based error exploration)
uses coordinated depth-bounded random walks to reduce
memory and bandwidth demands. A unique advantage
of BEE is that it is well-suited for use on clusters of
non-dedicated workstations.

Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Parallel Search for LTL Violations

Michael D. Jones and Jacob Sorber?

Department of Computer Science
Brigham Young University
Provo, Utah, USA
e-mail: jones@cs.byu.edu

The date of receipt and acceptance will be inserted by the editor

Explicit state enumeration model checking consists of
searching for errors while generating all of the reachable
states in a formal model. Errors can be either violations
of safety properties or liveness properties expressed in
a temporal logic such as linear temporal logic (LTL). A
table of visited, or generated, states is kept in order to
detect when no more new states can be generated. As
might be expected, the capacity of a state enumeration
model checker is limited by the number of states that can
be stored in the table of visited states. Even worse, per-
formance degrades quickly if the table of visited states
does not reside in random access memory.

Large design organizations already own hundreds of
workstations placed on the desks of individual designers,
verification engineers and administrative staff. Because
these workstations are networked and rarely fully uti-
lized, they can be used to form a dynamic cluster of
non-dedicated workstations. Parallel algorithms for this
environment must be fault-tolerant (as workstations en-
ter and leave the algorithm) and consume few resources
per workstation (in order to be “good neighbors” for
host processes).

Since the table of visited states is the limiting fac-
tor in model checking, recent advances in parallel model
checking algorithms for liveness properties achieve signif-
icant capacity increases by partitioning and distributing
the table (or representation) of visited states [GHS01,
BCKP01]. Partitioning and distributing the visited states
is best suited for static clusters of dedicated worksta-
tions.

Partitioning algorithms can not tolerate workstations
entering and leaving the search because part of the ta-
ble of visited states is lost when a workstation leaves the
search. This portion of the state table must be either
regenerated at another node or partitioned among the
remaining nodes. When a node enters the search, the

? Supported by a grant from the Intel Corporation

states must be repartitioned to accommodate the new
node. Repartitioning the states requires either sending
states over the network or regenerating the nodes. Fi-
nally, partitioning algorithms consume as much memory
as possible on each workstation. If only a small amount
of memory is used per workstation, then many worksta-
tions will be needed to perform the search and the search
will migrate more often. In the asymptotic worst case,
each workstation will store a single state and the search
will have to migrate with every transition.

The bee-based error exploration (BEE) algorithm is
designed to operate in the non-dedicated parallel com-
puting environment. The design of the BEE begins with
the decision to eliminate the global table of visited states
in favor of scalability and fault-tolerance. Eliminating
the table means that the BEE can not be used to certify
the correctness of formal models and that BEE is not a
model checker. Unlike a model checking algorithm, the
BEE algorithm can not ensure exhaustive coverage of
the reachable states.

The justification for this decision is that quickly find-
ing errors in formal models is at least as important as
certifying the correctness of formal models. The result-
ing tool can only be used to prove incorrectness—not
correctness. Given this decision, the problem is to con-
verge on errors as quickly as possible. The BEE algo-
rithm does this by employing a decentralized coordina-
tion scheme inspired by a social behavior of honeybee
colonies. In the non-dedicated parallel computing envi-
ronment, for which BEE is designed, the simplicity of
loosely coordinated random walks is an advantage be-
cause the algorithm tolerates node failures and presents
a small per-node footprint.

The cooperative social behavior of honeybees pro-
vides an excellent inspiration for designing such a coor-
dination scheme for use in a parallel search. In honeybee
colonies, useful collective behavior emerges from the co-
ordinated efforts of many simple (compared to the prob-

Michael D. Jones and Jacob Sorber: Parallel Search for LTL Violations 3

lems solved by the colony) individuals. The forager allo-
cation behavior of honeybee colonies is particularly well-
suited as a foundation for parallel LTL search. Forager
allocation involves identifying flower patches and allo-
cating foragers to forage for resources at the patches. In
LTL search, flower patches map to accept states and for-
aging maps to finding cycles that contain accept states.
The resulting algorithm searches for accept states, then
allocates workstations to forage for cycles beginning at
accept states.

The BEE algorithm has been implemented as an ex-
tension of the Murφ model checker [Dil96] and deployed
on a network of 64 non-dedicated workstations located in
student computing laboratories at Brigham Young Uni-
versity. The BEE algorithm was compared with unco-
ordinated random walk to demonstrate the value of the
coordination scheme. Experiments were also conducted
on static and dynamic workgroups and under different
load conditions. The BEE algorithm found errors faster
in models with one or few accept states while uncoordi-
nated random walk found errors faster in models with
many accept states.

The next section discusses related work. Section 2 de-
scribes the forager allocation scheme as used by honey-
bee colonies. In Section 3, the forager allocation scheme
is adapted to search for LTL violations. Section 4 con-
tains experimental results. We conclude and offer ideas
for further work in Section 5.

1 Related Work

The BEE algorithm is a biologically inspired system.
The most closely related work in biologically inspired
systems is the ant colony optimization (ACO) meta-
heuristic (see [DCG99] for details). ACO algorithms have
been successfully applied to computationally complex
combinatorial optimization problems. The most success-
ful of these applications solves dynamic routing prob-
lems in a changing network [CD98]. From an informa-
tion processing perspective, the main difference is that
ACO uses shared variables to communicate by deposit-
ing pheromone in a shared location while BEE uses undi-
rected multicast by performing waggle dances.

Interest in distributed model checking for a wide va-
riety of properties has increased over the past few years
[SD97,LS99,GHS01,?,BCKP01]. While many distributed
model checkers have been implemented, none of them are
designed explicitly to find errors using dynamic work-
groups.

Four distributed model checkers can be used to find
violations of LTL properties. Barnat et. al.’s [?] dis-
tributed version of SPIN requires the nested DFS to be
sequentially scheduled. This algorithm reduces to a se-
quential search for cycles in a distributed state table.
Brim et.al.’s [BCKP01] distributed algorithm is designed

specifically for LTL model checking and uses negative cy-
cle detection to avoid a sequential search for cycles. La-
fuente’s algorithm partitions the state space such that all
members of strongly connected components induced by
the property under test (the role of strongly connected
components in LTL model checking is discussed in more
detail in Section 3.1) are assigned to the same machine.
This partitioning simplifies the scheduling of the second
DFS. Grumberg et. al.’s [GHS01] distributed symbolic
model checker for the µ-calculus scales to hundreds of
machines but partitions the symbolic state representa-
tion across nodes. All three of these algorithms partition
the table of visited states (or BDD representing reach-
able states in the case of [GHS01]).

The BEE algorithm is neither a distributed model
checker nor designed for static workgroups. The BEE
algorithm is intentionally designed to find violations of
LTL properties rather than certify conformance to LTL
properties. This decision obviates the partitioned table
of visited states and allows a less constrained parallel
platform.

Similarly, the ASTRAL model checker [DK00] and
the bitstate hashing option in the SPIN model checker
[?] are designed to locate violations rather than certify
correctness. Although ASTRAL is designed to find errors
in real time systems (rather than discrete state systems),
the decision to find violations opens possibilities for al-
gorithms that are less computationally intensive but not
guaranteed to visit every state. ASTRAL has been ex-
tended to use random walk (and two other weaker meth-
ods not applicable here). For a model with seeded er-
rors, ASTRAL with random walk found shallow errors
(errors near the initial state) easily and deep errors (fur-
ther from the initial state) with more difficulty. As might
be expected, the BEE algorithm is also better at finding
shallow errors than deep errors.

We have included a Butterworth filter to control the
depth of BEE random walks. A Butterworth filter is a
band-pass filter used in signal processing. In the context
of random walks, the Butterworth filter describes the
probability of backtracking to a previously visited state.
Butterworth filters and their use in BEE are explained
in more detail in Section 3.2. The filter can be set to
focus the search on shallow or deep walks.

In SPIN, bitstate hashing reduces the amount of mem-
ory required for each state at the cost of complete cover-
age. During the search, each state is represented by one
or more bits at different locations in the table of visited
states. If more than one state hashes to the same loca-
tions in the table, then all of the states represented by
those bits are assumed to have been visited when the
first such state is visited. Bitstate hashing is well-suited
for models in which only a few states hash to the same
table locations and there is a high degree of connectivity

0 Albeit in infinite real time systems rather than finite state
models. Nevertheless, the use of random walk is similar

4 Michael D. Jones and Jacob Sorber: Parallel Search for LTL Violations

such that if one predecessor of a state is never visited,
the state is reached through another predecessor. For the
models tested here, bitstate hashing either failed to find
an error or required more time and space to find an error
than a single random walk. A more detailed description
of the comparison between bitstate hashing and random
walk is given later in Section 4.4.

Like ASTRAL’s random walk, it is difficult to com-
pute coverage on the BEE’s random walk. In contrast, a
lower bound on coverage using bitstate hashing is rela-
tively easy to compute. Random walks for model check-
ing with coverage estimates have been given in [Has].
The class of transition systems for which these coverage
estimates hold is severely limited. Our approach was to
forgo good coverage models in favor of a broader class
of transition systems.

2 Adapting Honeybee Forager Allocation

In this section, relevant points about the bee forager
allocation (BFA) system as it appears in nature are de-
scribed. In the next section, BFA is adapted to parallel
search for LTL violations. All of the following informa-
tion about BFA in nature has been reported by Seeley
et. al. in [SCS91,See95,SV88].

Seeley et. al. give an information flow model describ-
ing the behavior of an individual forager. This model is
used by Seeley to derive a simple mathematical model
that correctly predicted the behavior of a colony in an
experiment. The forager allocation problem is described
first, followed by a description of the BFA system.

2.1 The Forager Allocation Problem

Given a pool of unemployed foragers and profitability
information about a time-varying collection of foraging
sites, the forager allocation problem is the problem of
assigning foragers to sites in a way that maximizes the
accumulation of resources for the colony.

2.2 Bee Colony Forager Allocation System

In the absence of a leader, the BFA mechanism emerges
from the behavior of individual foragers. Each of these
individuals posses only limited information about the
global allocation of labor and the need and availabil-
ity of resources. Despite the limited perception of each
individual, the resulting allocation always accumulates
resources for the colony at no less than half the optimal
rate [ISTV93].

The first task for a given forager is to become re-
cruited to a foraging site. Recruitment happens on the
so-called “dance floor”. The dance floor is an area in the
hive, near the hive entrance, at which foragers advertise
the location of foraging sites using a waggle dance. The

unemployed forager wanders the dance floor more or less
at random until encountering a waggle dance. The prob-
ability of encountering a waggle dance for site σ is given
by ff (σ). The duration and intensity of waggle dances,
which depend of the quality of a site, determine the value
ff (σ) (as explained later). In almost all cases, the for-
ager follows the first waggle dance she encounters. After
following a waggle dance, the forager immediately exits
the hive and begins foraging at σ.

The forager then returns to the hive to unload. Af-
ter unloading, the forager selects one of three possible
actions: abandon the site, perform a waggle dance and
return to σ, or return directly to σ. The probability of
abandoning σ is given by fx(σ). If the forager abandons
σ, then the forager rejoins the pool of unemployed for-
agers wandering the dance floor. If the forager does not
abandon σ, then the forager will perform a waggle dance
to advertise σ with probability fd(1 − fx(σ)). Whether
or not the forager performs a dance, the forager then
returns to σ.

The values of fx(σ) and fd(σ) are determined by the
forager’s perception of the colony’s demand for the re-
source at σ. It is believed that the forager perceives this
need by observing indirect indicators of demand, such as
the amount of time needed to find an unloader for the
resource.

If a resource is abundant at σ and needed, then the
dance will be long and intense. Otherwise, the dance will
be short and pallid. The duration of the dance can vary
by as many as two orders of magnitude. Since the length
of a dance is proportional to the perceived quality of
and need for the resource a site, the probability that an
unemployed forager will encounter a dance for site σ,
denoted by ff (σ) above, is greater for sites with greater
quality and need. If Dσ is the number of dances currently
being performed for site σ and dσ is the duration of the
dance for σ, then probability of encountering a dance for
σ is given by:

ff (σ) =
Dσdσ∑n

i=1 Dσidσi

(1)

where n is number of currently known foraging sites.
If an unemployed forager is not recruited to a forag-

ing site by a waggle dance, then that forager may be-
come a scout bee and leave the hive in search of a new
foraging site σ′. Upon returning to the hive, the scout
performs the same evaluation of σ′ described above. If
the resource at σ′ is in demand, the scout performs a
waggle dance advertising σ′ and σ′ becomes one of the
σis in Equation 1 above (with the sum taken over n + 1
to include the new site).

3 Adapting BFA to LTL Violation Discovery

BFA can be simplified into a two part process: scout
bees locate and advertise foraging sites then forager bees

Michael D. Jones and Jacob Sorber: Parallel Search for LTL Violations 5

BFA LTL Violation Search

Goal accumulate resources locate violations
Forager Apis mellifera BEE process
Foraging site search not known bounded random walk
Foraging site Flower patch Accept state
Quality of a site Pollen composition Distance from start state
Communication Waggle dance TCP/IP
Site advertisement Distance and direction Trace from start state

Table 1. Adaptation of BFA to parallel search for LTL violations.

observe advertisements and gather resources. Similarly,
checking the non-emptiness of a Buchi automata using
double depth-first search (DFS) is a two part process:
a DFS locates an accept state and another DFS locates
an cycle containing the accept state. The adaptation of
BFA to LTL violation search follows directly from this
similarity, and is summarized in the table shown in Ta-
ble 11. The next section gives a detailed description of
the resulting algorithm, after recalling the reduction of
LTL model checking to language containment on Buchi
automata.

3.1 Introduction to LTL Model Checking

This section contains a more detailed description of the
model checking problem for LTL. In the interest of read-
ability, notation and formalism is kept to a minimum.
For a more detailed introduction, see [CGP00]. On first
reading, it may be useful to remember that checking the
non-emptiness of a Buchi automata is important and
that checking the non-emptiness of a Buchi automata
requires finding an accept state contained in a cycle. The
details below may be absorbed in subsequent readings.

The LTL model checking problem is the problem of
proving that a transition system does or does not sat-
isfy an LTL assertion. An LTL assertion is a predicate
built from atomic propositions, the usual boolean con-
nectives (such as “and”, “or” and “not”) and temporal
quantifiers. Atomic propositions describe properties that
are satisfied or violated in a given state. The temporal
quantifiers describe properties of sequences of states. For
any LTL formula p, the temporal quantifiers are:

– always p, which means p is true in all future states,
– eventually p, which means p is true in at least one

future state, and
– p until q, which means p is true in every future state

until q is true in at least one future state.

A few common LTL formulae and their meaning are
given below:

1 With the caveat that pollen composition is just one of several
plausible indicators of quality discussed by Seeley [See95]. Other
plausible indicators include an individuals glucose level and the
wait time to find a worker to unload the resource. In every case,
the indicator is a single individual’s observation of indirect metrics.

– (Always p) implies (Eventually q): means that a con-
tinuous request p is eventually granted a response,
q.

– (Eventually p) until (q): means request p is periodi-
cally repeated until a response q is received.

– p implies (q until r): means if p becomes true, then
q must remain true until r becomes true.

The usual method for checking LTL properties is to
rephrase the problem as a language containment prob-
lem on Buchi automata. A Buchi automata is a finite
state automata that accepts only infinitely long words.
Buchi automata are defined like normal finite state au-
tomata, but with a different acceptance condition. Fi-
nite state automata accept a word w iff using w as input
causes the automata to halt in an accepting state. Buchi
automata accept a word w iff using w as input causes
the Buchi automata to pass through an accepting state
infinitely often. More formally, let inf(w) be the set of
states that are visited infinitely often on input w and A
be the set of accepting states, then a Buchi automata
accepts w iff inf(w) ∩A is non-empty.

The reduction of LTL model checking to an empti-
ness check on Buchi automata is done by translating the
transition system and an LTL assertion into two sepa-
rate Buchi automata, T and P respectively. Then T is
intersected with the negation of P to create a new au-
tomata, I = T ∩ P . The language of the automata I
contains behaviors of T that violate P . If the language
of I is empty, then T does not violate P . Otherwise, the
language of I contains only violations of P by T . We can
check that the language of I is empty (i.e., T is correct
with respect to P) by checking that I contains no accept
states in cycles.

The search for accept states contained in cycles is
usually done using Tarjan’s double depth-first (DDFS)
search algorithm shown in Figure 1. The dfs1 search lo-
cates accept states and the dfs2 search looks for cycles
containing the accept states found during dfs1. In dfs2,
cycles are detected when a state on the dfs1 stack is lo-
cated. A hashtable of visited states prevents states from
being expanded more than once. The capacity of an LTL
model checker is limited by the number of visited states
that can be stored in memory.

6 Michael D. Jones and Jacob Sorber: Parallel Search for LTL Violations

Procedure Search
dfs1(start-state)
exit (empty)

Procedure dfs1(s)
add s to hashtable
foreach s′, a successor of s, do

if s′ not in hashtable then dfs1(s′)
if accept-state(s) then dfs2 (s)

Procedure dfs2(s)
mark s in hashtable
foreach s′, a successor of s, do

if s′ in dfs1Stack then exit(nonEmpty)
if s′ not marked in hashtable then dfs2(s′)

Fig. 1. The double depth-first search (DDFS) algorithm for check-
ing the non-emptiness of the language of a Buchi automata.

3.2 The BEE algorithm

The BEE algorithm consists of coordinated parallel ran-
dom walks and a recorder process. Pseudocode for the
recorder and random walks is given in Figure 2. Line
numbers in the following description refer to lines in Fig-
ure 2. The recorder process initiates the search by issu-
ing several first-walk requests to the workstations in the
user-defined start-set (line 2). The recorder process then
receives and reports errors until receiving a stop com-
mand from the user (line 4). After being stopped, the
recorder sends the stop command to every participating
workstation in the node-set (line 9). The node-set should
include all workstations that have the potential to par-
ticipate. Since the recorder does not know which work-
stations are actively participating, the stop command is
sent to every potentially participating workstation.

The first random walk attempts to locate an accept
state in the Buchi automaton representing the system
under test intersected with the negation of the prop-
erty being checked. The first walk is depth-bounded (as
explained shortly) and retains the path to the current
state. If the first walk locates an accept state, the BEE
process assesses the quality of the accept state and then
sends its location to a fraction of the other known BEE
processes (line 19). If the first walk exhausts available
memory without finding an accept state, the first walk
terminates and returns an error that is reported to the
user. This fraction is proportional to the quality of the
accept state. The quality of an accept state is inversely
proportional to its distance from a start state, since short
error traces are preferable to long error traces (line 20).

When an accept state is advertised to another pro-
cess, the “finder” process first sends a query to several
“forager” processes. The query asks the forager if it has
the capacity to begin searching at a new accept state.
The forager can either decline or accept the query. If

the forager accepts the query, then the finder sends the
entire trace leading to the accept state. The forager be-
gins a second walk at the accept state after receiving the
trace. The details of this negotiation process are omitted
from the pseudocode for clarity.

The second search begins at the accept state and
attempts to locate a path back to the accept state. If a
path back to the accept state is found, the BEE process
sends the entire trace back to a recorder process (line 33).
The recorder process notifies the user and writes the
trace to a file. Because several second searches may be
done concurrently, the recorder processes may receive
many error traces (including duplicates) before the user
terminates the search.

Both the search for accept states and the search for
paths back to an accept state use depth bounded ran-
dom walk to traverse state graphs. At each state, a deci-
sion is made to backtrack or explore a randomly chosen
successor (lines 16 and 30). When the decision is made
to backtrack, the new current state is chosen randomly
from the current search stack. In the second walk, the
search stack, S2 of line 28, contains only the states be-
tween the initial accept state and the current state. If
the probability of backtracking is Bt(depth) and there
are n successors of a given state, then the probability of
choosing a particular successor is

1−Bt(depth)
n

.

The distribution of probability in next state computa-
tion is shown in Figure 3. From a given state, the search
can either backtrack (shown using the curved up arrow)
with probability Bt(depth) or continue to a successor
with the remaining probability split over the successors
(shown using the straight, down arrows).

In our depth bounded random walk, Bt(depth) is
computed using a version of the shallow-pass Butter-
worth filter. The shallow-pass Butterworth filter is anal-
ogous to a high-pass filter in signal processing which al-
lows high-frequency signals to pass through. The shallow-
pass filter allows shallow walks into the transition graph,
but filters deep walks. For BEE processes, the filter is

Bt(depth) =
pmax

1 +
(

dt2

depth2

) dt
2×dx

(2)

where pmax is the greatest probability of backtracking,
dt is the depth at which Bt(depth) = pmax/2 and dx
controls the steepness of the filter. The relationships be-
tween dt, dx and pmax are shown in Figure 4. In the
figure, dt = 50, dx = 10 and pmax = 1.0. Small val-
ues of dx (relative to dt) concentrate the search around
depth dt.

The Butterworth filter gives a wider distribution of
random walk depths than a square edge filter. The square
edge filter cuts off all walks at a preset depth. A wider
distribution of walk depths reflects uncertainty regard-
ing the exact depth of a violation. If the depth of an error

Michael D. Jones and Jacob Sorber: Parallel Search for LTL Violations 7

1 Process recorder (M: model,start-set, node-set: set-of-compute-nodes)
2 for each workstation in start-set send (workstation, first-walk-request (M))
3 endfor
4 while (not stopped)
5 wait for error-message
6 receive (error-message (S2,S1))
7 report error and trace (S2 append S1)
8 endwhile
9 for each workstation in node-set send (workstation, stop)
10
11 Process first-walk
12 wait for first-walk-request
13 receive (first-walk-request (M));
14 x = initial-state(M); S = x;
15 while(not receive (stop))
16 if (Bt (depth(S))) then x = random-element (S)
17 x = random-next-state (x, M);
18 S = S append x;
19 if (accept-state (x))
20 target-set = select (N ∗ quality(x)) other nodes
21 for each target in target-set send (target, second-walk-request (M, S,x))
22 endfor
23 endwhile
24
25 Process second-walk
26 wait for second-walk-request
27 receive (second-walk-request (M,S1,x))
28 S2 = x
29 while(not receive (stop))
30 if (Bt (depth(S2))) then x = random-element (S2)
31 x = random-next-state (x, M);
32 S2 = S2 append x;
33 if (x in S1) send (recorder, error (S2, S1))
34 endwhile

Fig. 2. Three algorithms used in BEE.

Bt(depth)

1-Bt(depth)
n

Probability of Backtracking:

Probability of taking a specific transition:

1 2 3 ... n

Fig. 3. Distribution of probability in next state computation.

0

0.25

0.5

0.75

1

0 10 20 30 40 50 60 70 80 90 100

depth

pr
ob

ab
ili

ty

Bt(depth)

dxdx-dt dx+dt

pmax/2

Fig. 4. Anatomy of a Butterworth filter.

8 Michael D. Jones and Jacob Sorber: Parallel Search for LTL Violations

Fig. 5. Visit distributions and backtracking probabilities.

is precisely known, then simpler exploration algorithms
targeting that specific depth would be more appropriate.

The graphs in Figure 5 show the distribution of visit
depths for three filters on the same model. The value
of pmax is 0.05 for each graph. As can be seen in Fig-
ure 3, values of pmax greater than 0.05 tend to backtrack
too often because the remaining probability of choos-
ing a successor is divided between all successors. The
top graph shows the fraction of visits performed at each
depth and the bottom graph shows the probability of
backtracking as a function of search depth. The fraction
of states visited at each depth is the number of unique
states visited at a given depth divided by the total num-
ber of states at that depth. Depth is measured as the
length of the shortest path to a state from the start
state. As dt moves to the right on the horizontal axis,
the concentration of searched states moves with it.

3.3 Communication Overhead

The biological process on which BEE is based requires
little communication. This is also true for BEE—when
the verification problem under analysis matches the bi-
ological environment. If there are many accept states,

communication overhead can begin to dominate the BEE
algorithm and the process spend their time communicat-
ing rather than finding errors.

Communication is required to initialize the search
and to advertise accept states. Initializing the search in-
volves discovering other workstations and starting sev-
eral DFS1 search processes. Workstation discovery is
done via UDP broadcast every 60 seconds and is con-
stant throughout the life of the search. Advertisements
for accept states dominate the communication overhead.

The number of advertisements sent per state explored
is the number of initial first-walk processes plus the ad-
vertisements resulting from accept states found during
the first-walk. This is given by the following equation.

Ms = P0 + (ND̄)
A∑

j=1

CPoisson(PN − 1,
jD̄

N
)

where

– Ms = number of messages sent for every “S” states
explored.

– A = number of accept states discovered.
– N = number of participating nodes in the network.

Michael D. Jones and Jacob Sorber: Parallel Search for LTL Violations 9

– PN = DFS2 processes allowed per workstation, if
only on process is allowed per workstation, then PN =
1.

– PO = Initial number of DFS1 processes injected into
the network.

– D̄ = average fraction of workstations notified per
trace

The total number of messages sent is given by the
sum of the initial messages sent, P0, and the total num-
ber of messages sent for all accept states, given in the
rightmost term. The rightmost term has two parts: ND̄
gives the average number of processes notified per accept
state discovered and the summation gives the number of
those requests that are fulfilled for each accept state.
The number of requests fulfilled is modeled by the cu-
mulative Poisson probability that PN −1 or fewer DFS2
jobs have been started on any node, given that the ex-
pected average number of jobs per node is jD̄/N . The
Poisson distribution is suitable for this problem because
it deals with discrete events occurring randomly in time
or space. The number of messages is greatest when many
shallow accept states are discovered since A, R and D̄
are large. Experimental results given in Section 4 vali-
date this model.

3.4 Termination Detection

Termination detection is managed by the central recorder
process. When the user requests that the search is ter-
minated, the recorder sends a stop message to every par-
ticipating workstation. Each workstation then kills any
active search processes.

3.5 Computational Platform

The BEE algorithm uses a dynamic cluster of worksta-
tions that share a common file system and TCP/IP con-
nections. Workstations may enter and leave the cluster
during a search. The common file system is used for
model distribution only. The common file system can be
eliminated by sending the model to each workstation be-
fore beginning the search. Each workstation must be able
to receive a UDP broadcast from another workstation.
The BEE algorithm was implemented as an extension of
the Murφ model checker [Dil96] modified to check LTL
properties and combined with a socket-based communi-
cation module.

4 Results

All experiments were run on a network of workstations
in open-use classroom laboratories associated with com-
puter science classes at Brigham Young University. Each
BEE process consumed up to 40 MB of memory per

workstation and was run at the lowest possible priority
level to avoid disturbing other users.

BEE is compared with isolated random walk (ISO)
on two models. One model, sparse shallow 7, contains
one accept state and the other, Peterson’s mutual exclu-
sion on 11 nodes (11-Peterson), contains many accept
states. Isolated random walk is parallel random walk
in which workstations may not communicate with each
other. Comparing BEE to ISO demonstrates the advan-
tage, or disadvantage (in some cases), of using the BEE
coordination scheme. BEE finds an error faster in the
model with one accept state and ISO finds an error faster
in the model with many accept states. The 11-Peterson
problem contains the right number of accept states such
that the ISO and BEE algorithms find errors at the same
rate. Results are were not generated for models with ac-
cept state densities greater than 11-Peterson to avoid
saturating the non-dedicated network with accept state
advertisements. Section 5 contains ideas for an adaptive
communication mechanism that will scale individual ea-
gerness to communicate with accept state density.

Results are given only for simple, contrived prob-
lems. Contrived problems were used because the perfor-
mance of a violation discovery algorithm is sensitive to
the topology of the transition graph and distribution of
errors. In the extreme case, finding an error in a transi-
tion graph with 1010 states and a single error consisting
of the initial state and its successor would be a trivial
exercise. Instead of giving results for standard examples,
we chose to give results for simple examples in which we
can precisely control and characterize the shape of the
transition graph and locations of errors.

Since the bitstate algorithm implemented in SPIN
is also intended to find errors in large transition sys-
tems, we include a separate subsection comparing bit-
state hashing with random walk. A secondary advan-
tage of this approach is that is simplifies the problem
of creating PROMELA and Murφ models with identical
transition graphs.

4.1 Sparse Shallow 7

The sparse shallow 7 model consists of 7 counters that
count from 50 down to 0. In a single transition, one
counter can decrement its value by 1. When a counter
reaches 10 its value can be reset to 40. The property
to be checked is “not always eventually is every counter
equal to 40.” Violations of this property consist of an ac-
cept state, in which every counter equals 40, contained
in a cycle. There are 7× 1011 reachable states and only
one accept state in the model. The graph distance from
the start state to the accept state is 72 and the smallest
distance from a successor of the accept state back to it-
self is 240 states. The diameter of the transition system
is 350.

ISO and BEE were run 10 times each on static groups
of 4,8,16,32 and 64 workstations. A single random walk

10 Michael D. Jones and Jacob Sorber: Parallel Search for LTL Violations

Fig. 6. Speedups for isolated random walk (ISO) and the BEE algorithm on sparse shallow 7.

process found the error in an average of 21 minutes (av-
erage over 10 runs). Speedups were computed using ran-
dom walk on a single machine and are shown in Fig-
ure 6. While neither algorithm achieves linear speedup
(note that the horizontal axis is logarithmic), using the
coordination scheme in BEE gives a greater speedup be-
cause more secondary searches for cycles containing ac-
cept states are launched. The BEE coordination scheme
is most useful on workgroups of 16 and 32 workstations
where the speedup is nearly doubled (8.6 and 4.3 on
16 workstations and 10.4 and 6.9 on 32 workstations)
compared to isolated random walks. With 64 worksta-
tions, the advantage of the coordination scheme is nearly
eliminated by the advantage of many concurrent random
walks.

4.2 Peterson’s Mutual Exclusion

The Peterson’s mutual exclusion model contains 11 pro-
cesses negotiating for exclusive access to a critical sec-
tion. The property to be checked is “not always eventu-
ally does every process enter the critical section.” Viola-
tions of this property consist of an accept state, in which
every process has previously entered the critical section,
contained in a cycle. BEE and ISO have found accept
states at or near a depth of 480 contained in cycles of
between 70 and 200 states. We do not know how many
reachable states there are in the 11-Peterson model.

ISO and BEE were run 10 times each on static groups
of 4,8,16,32 and 64 workstations. The speedup was com-
puted using random walk on a single machine and are
shown in Figure 7. Both algorithms achieve linear or
slightly superlinear speedup on 64 workstations. The
performance scales to 64 workstations because we are
measuring the time to find the first error using many
concurrent random walks in a transition system with

many errors. As the number of random walks increases,
the probability of quickly randomly hitting an error in-
creases.

Because the model contains many accept states, the
BEE coordination scheme has no advantage. Using BEE
coordination, processes spend most of their time sending
advertisements for accept states rather than searching
for errors. The 11-Peterson model contains just enough
accept states that the ISO processes find the error only
slightly faster than the BEE processes. We have devised
models with a denser distribution of accept states. On
these models ISO processes find errors significantly faster
than BEE. Results are not included for these models be-
cause they are difficult to test without severely impact-
ing network performance and inconveniencing users.

4.3 Dynamic Workgroups

The second group of experiments compares the perfor-
mance of BEE in different computing environments. The
32 workstation tests were repeated on the last night of
a semester, when the average system load on each ma-
chine was near 1.0 and 3-4 persons were remotely logged
into each machine. Under these conditions, BEE found
the first violation in an average of 147 seconds, rather
than 119 seconds required by a mostly idle workgroup.
According to the t-test, it is unclear if the means are
different (p = 0.66). The 16 workstation tests were re-
peated with 3 workstations exiting and re-entering the
search 30 seconds into the search. Under these condi-
tions, BEE found the first violation in average of 251
seconds, rather than 152 seconds required by a stable
workgroup. According to the t-test, the averages are dif-
ferent (p = 0.12).

The BEE algorithm requires more time on a dynamic
network because nodes rejoining the search after a reset

Michael D. Jones and Jacob Sorber: Parallel Search for LTL Violations 11

Fig. 7. Speedups for isolated random walk (ISO) and the BEE algorithm on 11-Peterson.

must either find an accept state or be notified of an ac-
cept state before beginning a new DFS2 process. Before
beginning the new DFS2 search, the newly started node
contributes little to the discovery of new errors.

4.4 Comparison with Bitstate Hashing

The sparse shallow 7 model and a variant with only 5
counters, sparse shallow 5, were used to compare bit-
state hashing with the random walks used in the BEE
algorithm. Bitstate hashing and BEE were compared in
terms of the time and space required to find an error.
Since BEE uses depth bounded random walks, we set the
SPIN depth bound to 400. This depth is deep enough to
contain violations but prevents unnecessarily long traces.
We ran a series of tests in which the amount of memory
available for the bitstate table increased from 42.1 MB
to 671.3 MB. The 42 MB tests compare bitstate hashing
with BEE using the same amount of memory. The other
tests determined if bitstate hashing could be used to find
an error at all.

The table in Table 2 compares the results for bit-
state hashing and BEE on sparse shallow 7. Coverage
was computed by dividing the total number of transi-
tions taken by the number of reachable states. SPIN in-
cludes 32 different hash functions that can be used with
bitstate hashing to cover different subsets of the reach-
able states. We reran the 42.1 MB tests with each of the
32 hash functions and did not find the error in any run.

Comparing bitstate with BEE on the 11-Peterson
model produced similar results with a hash factor rang-
ing from 1.541 to 1.568. The results were similar in that
BEE found the error and SPIN using bitstate never found
the error.

In the sparse shallow 5 model, bitstate hashing in
SPIN found the error but in more time than random

walk. In these tests, the depth was set to 250 and we
allowed 671.3 MB of memory for the bitstate table. SPIN
found the error in 387 seconds while random walk on a
single machine required between 276 and 7 seconds with
an average of 63.7 seconds (average over 10 runs) using
40 MB of memory.

The sparse shallow model results demonstrate that
there is at least one problem in which random walk is
more effective than bitstate hashing. This is not the case
in general. Table 3 gives results for a tree shaped model,
called “tree”, with 108 states and 108 − 1 accept states
(the initial state is not an accept state). In the tree
model, only one accept state is contained in a cycle. The
remaining accept states are not part of an error. In this
table, the parallel BEE algorithm is compared with the
sequential bitstate algorithm. The BEE algorithm was
executed on 64 workstations. The BEE algorithm failed
to find the error after one hour because the search for cy-
cles began at an accept state that was not contained in a
cycle. The bitstate algorithm searches for cycles contain-
ing any accept state and avoids duplicate search using a
hashtable on the DDFS algorithm.

5 Conclusion and Future Work

The ability of the BEE algorithm to find errors quickly,
compared to isolated random walks, depends on the preva-
lence of accept states. If accept states are rare, the BEE
algorithm finds errors more quickly than isolated random
walk due to the coordination scheme. If accept states
are prevalent, the BEE algorithm can find errors as fast
as or much slower than isolated random walk due to
communication overhead incurred by the coordination
scheme. Both isolated random walk and BEE coordi-
nation can scale well up to at least 64 processors due

12 Michael D. Jones and Jacob Sorber: Parallel Search for LTL Violations

Algorithm Memory Time Found Coverage Hash
(MB) (sec) error? factor

bitstate 42.1 904 no ≥0.08% 1.451
bitstate 84.1 1,858 no ≥0.16% 1.458
bitstate 168.0 3,837 no ≥0.33% 1.457
bitstate 335.7 7,876 no ≥0.66% 1.460
bitstate 671.3 16,266 no ≥1.46% 1.461
random walk 40 1,240 yes unknown -

Table 2. Results for bitstate hashing in SPIN and random walk on one processor for the sparse shallow 7 model.

Algorithm Memory Time Found Coverage Hash
(MB) (sec) error? factor

bitstate 335.7 380 yes ≥ 89.5% 5.996
BEE 40 3,600 no unknown -

Table 3. Results for bitstate hashing in SPIN and random walk for the tree model with many accept states not contained in cycles.

to their lack of coordination or decentralized coordina-
tion, respectively. The BEE coordination scheme toler-
ates workstations entering and leaving the cluster and
tolerates heavily loaded machines, although the perfor-
mance predictably suffers.

Compared to bitstate as implemented in SPIN, ran-
dom walks consume less memory and find errors in less
time in the sparse shallow 5, sparse shallow 7 and 11-
Peterson models. Bitstate hashing performs poorly in
these cases because its coverage is heavily concentrated
at the lowest depths allowed. In the sparse shallow 7
tests, 76% of the coverage was concentrated at the three
lowest search depths and only 98 states were explored at
the minimal accept state depth. The double depth first
search algorithm used in SPIN must explore the deepest
states first to avoid masking cycles in the second depth
first search. If the depth bound is set to concentrate cov-
erage at the minimal accept state depth, SPIN will not
find the error because all cycles will be truncated (for
the models analyzed here). Since random walk does not
presuppose to find all, or any, errors the search depth
can be adjusted to provide more useful coverage.

Bitstate hashing found errors more quickly than BEE
in models with many accept states that were not con-
tained in cycles. In these problems, the BEE algorithm
focused search effort on accept states that were not con-
tained in cycles.

While quite simple, isolated random walk in parallel
was effective at finding errors in large transition systems.
The isolated random walks used here, and to some ex-
tent the BEE algorithm, are a form of random simula-
tion. The main difference is that random walk through
a formal transition system to find violations of a formal
property does not require the use of a reference model
to compute correct results. Instead, random walks on
formal transition systems recognize errors as they are
defined by the property.

The results indicate that adjusting the frequency and
intensity of communication is a vital part of the BEE

coordination scheme. In the current BEE coordination
scheme, the communication intensity is set manually us-
ing a static analysis of accept state depth. In nature,
the communication intensity of a honeybee can vary by
as many as two orders of magnitude and depends on
the quality of a site and the need for the resource at a
site. In other emergent systems derived from social in-
sect behavior, communication intensity varies with per-
ceived network traffic over a given time period—in ad-
dition to static factors. We are currently creating the
feedback loops that will allow BEE processes to adjust
their communication intensity and frequency based on
the quality of an accept state and recent communica-
tion behavior. In one extreme, when many accept states
are being discovered, BEE processes will rarely commu-
nicate and the search will devolve into isolated random
walk. At the other extreme, when no accept states have
been recently discovered, BEE processes will communi-
cate an accept state to every known process. In addition
to controlling communication intensity and frequency,
the feedback loop could be used to allow each individ-
ual to switch between the first and second phases of the
DDFS.

Possibilities for future work include not only improv-
ing the coordination scheme but also improving the search
technique. The coordination scheme can be improved
by implementing adaptive communication that is sen-
sitive not only to the quality of an accept state, but
the need for more accept state advertisements as de-
scribed above. The performance of each BEE process can
be improved by replacing random walk with a memory
bounded best-first search method based on A* search
(using SMA* [Rus92]). Directed model checking using
variants of A* has been explored by Edelkamp [ELLL01]
but for exhaustive searches. Combining random walk
with memory bounded A* is likely to result in an algo-
rithm that is similar to Brim’s randomized LTL model
checking algorithm [BCN01] with a reduction strategy
based on cost estimates rather than visitation factors.

Michael D. Jones and Jacob Sorber: Parallel Search for LTL Violations 13

References

[BCKP01] L. Brim, I. Cerna, P. Krcal, and R. Pelanek. Dis-
tributed LTL model checking based on negative
cycle detection. In FST-TCS01, number 2245 in
LNCS. Springer, 2001.

[BCN01] L. Brim, I. Cerna, and M. Necesal. Randomiza-
tion helps in LTL model checking. In PAPM-
PROBMIV Workshop, number 2165 in LNCS.
Springer, 2001.

[CD98] G. Di Caro and M. Dorigo. Antnet: Distributed
stigmergetic control for communications networks.
Journal of Artificial Intelligence Research, 9:317–
365, 1998.

[CGP00] E. M. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 2000.

[DCG99] M. Dorigo, G. Di Caro, and L. M. Gambardella.
Ant algorithms for discrete optimization. Artifi-
cial Life, 5(2):137–172, 1999.

[Dil96] David L. Dill. The Murφ verification system.
In Rajeev Alur and Thomas A. Henzinger, edi-
tors, Computer-Aided Verification, CAV ’96, vol-
ume 1102 of Lecture Notes in Computer Science,
pages 390–393, New Brunswick, NJ, July/August
1996. Springer-Verlag.

[DK00] Z. Dang and R. Kemmerer. Three approximation
techniques for ASTRAL symbolic model checking
of infinite state real-time systems. In 22nd In-
ternational Conference on Software Engineering
(ICSE00), pages 345–354. IEEE Press, 2000.

[ELLL01] Stefan Edelkamp, Alberto Lluch-Lafuente, and
Stefan Leue. Directed explicit model checking
with HSF-SPIN. In 8th International SPIN Work-
shop on Model Checking Software, number 2057
in Lecture Notes in Computer Science. Springer-
Verlag, 2001.

[GHS01] O. Grumberg, T. Heyman, and A. Schuster.
Distributed symbolic model checking for the µ-
calculus. In Computer Aided Verification 2001
(CAV01), number 2102 in LNCS. Springer, 2001.

[Has] P. Haslum. Model checking
by random walk. available at
http://www.ida.liu.se/˜pahas/public/ccsse99.ps.gz.

[ISTV93] J.J. Bartholdi III, T. D. Seeley, C. A. Tovey, and
J. H. Vande Vate. The pattern and efective-
ness of forager allocation amung flower patches by
honey bee colonies. Journal of Theoretical Biol-
ogy, (160):23–40, 1993.

[LS99] F. Lerda and R. Sisto. Distributed-memory model
checking in SPIN. In The SPIN Workshop, vol-
ume 1680 of Lecture Notes in Computer Science.
Springer, 1999.

[Rus92] S. J. Russell. Efficient memory-bounded search
methods. In ECAI92: 10th European Conference
on Artificial Intelligece Proceedings, pages 1–5.
Wiley, 1992.

[SCS91] T.D. Seeley, S. Camazine, and J. Sneyd. Collec-
tive decision-making in honey bees: how colonies
choose amung nectar sources. Behavioral Ecology
and Sociobiology, 28:277–290, 1991.

[SD97] Ulrich Stern and David L. Dill. Parallelizing
the Murφ verifier. In Orna Grumburg, editor,

Computer-Aided Verification, CAV ’97, volume
1254 of Lecture Notes in Computer Science, pages
256–267, Haifa, Israel, June 1997. Springer-Verlag.

[See95] T. D. Seeley. The Wisdom of the Hive: The Social
Biology of Honey Bee Colonies. Harvard Univer-
sity Press, 1995.

[SV88] T. D. Seeley and P.K. Visscher. Assessing the ben-
efits of cooperation in honeybee foraging: search
costs, forage quality and competitive ability. Be-
havioral Ecology and Sociobiology, 22:229–237,
1988.

