
3/12/09 1

Eric Mercer
Joel Self

Software Model Checking Lab
Brigham Young University

SPIN 2007
Berlin, Deutchland

3/12/09 Eric Mercer & Joel Self

2

February 25, 1991 a patriot 
missile  failed  to  intercept 
an  incoming  Iraqi  scud 
missile killing 28 solders in 
a military barrack. 

1994 Intel FPDIV
1996 Ariane 5 Rocket Explosion

2000 I Love You Virus

2004 BMW Engine Stall

2006 Segway Destabilize

1991 Patriot missile clock drift

2007 Encryption broken
 Blu-Ray HD DVD

2006 Utah voting machines fail

Eric Mercer & Joel Self 3/12/09

02/2007 Subliminal slot machine messages
02/2007 F-22 Raptor system crash

02/2007 Dow Jones plunge

Eric Mercer & Joel Self 3/12/09

  Software errors may be small, but catastrophic
  Traditional testing will miss these small errors
  Model checking can help find subtle errors
  Model checking takes a system and a specification

 Exhaustively enumerates all behaviors
 Checks if behaviors meet or violate the specification

  Result is a proof

3/12/09 Eric Mercer & Joel Self

5

1: f(int a, int b, int c)

2: if(a > 0) then

3: b = 3;

4: c = 5;

5: print a,b,c; assert c != 7

6: end

3/12/09 Eric Mercer & Joel Self

6

a = 0
b = 1
c = 5

a = 1
b = 3
c = 2

a = 1
b = 3
c = 3

So

a = 0
b = 1
c = 2

a = 0
b = 1
c = 3

a = 1
b = 1
c = 2

a = 1
b = 2
c = 3

S1 S2 S4

a = 1
b = 1
c = 2

a = 1
b = 2
c = 3

S7 S8

a = 0
b = 1
c = 2

S5

S9 S10 S11

a = 1
b = 3
c = 5

S12

S3

a = 0
b = 1
c = 3

S6

  Size of state space can be prohibitive
  32 bit integer = 2^32 or around 4 billion values
  Data abstraction can help
  Represent many values with fewer values
  Dead variable analysis
  Precise data abstraction
  Requires no theorem prover
  Builds on known static analysis techniques

3/12/09 Eric Mercer & Joel Self

7

  Label variables live or dead at a location
 Live = current valuation will be used in some future
 Dead = current valuation will not be used in any future

  Dead variables do not affect program behavior
  We ignore these valuations
  Dead variable values do not distinguish states

3/12/09 Eric Mercer & Joel Self

8

1: f(int a, int b, int c)

2: if(a > 0) then

3: b = 3;

4: c = 5;

5: print a, b, c;

6: end

3/12/09 Eric Mercer & Joel Self

9

a = 0
b = 1
c = 5

a = 1
b = 3
c = 2

a = 1
b = 3
c = 3

So

a = 0
b = 1
c = 2

a = 0
b = 1
c = 3

a = 1
b = 1
c = 2

a = 1
b = 2
c = 3

S1 S2 S4

a = 1
b = 1
c = 2

a = 1
b = 2
c = 3

S7 S8

a = 0
b = 1
c = 2

S5

S9 S10 S11

a = 1
b = 3
c = 5

S12

S3

a = 0
b = 1
c = 3

S6

1: f(int a, int b, int c)

2: if(a > 0) then

3: b = 3;

4: c = 5;

5: print a, b, c;

6: end

3/12/09 Eric Mercer & Joel Self

10

a = 0
b = 1
c = 5

a = 1
b = 3

a = 1
b = 3

So

a = 0
b = 1

a = 0
b = 1

a = 1
b = 1

a = 1
b = 2

S1 S2 S4

a = 1
b = 1

a = 1
b = 2

S7 S8

a = 0
b = 1

S5

S9 S10 S11

a = 1
b = 3
c = 5

S12

S3

a = 0
b = 1

S6

1: f(int a, int b, int c)

2: if(a > 0) then

3: b = 3;

4: c = 5;

5: print a, b, c;

6: end

3/12/09 Eric Mercer & Joel Self

11

a = 0
b = 1
c = 5

a = 1
b = 3

a = 1
b = 3

So

a = 0
b = 1

a = 1
b = 1

a = 1
b = 2

S1 S4

a = 1 a = 1

S7 S8

a = 0
b = 1

S5

S9 S10 S11

a = 1
b = 3
c = 5

S12

S3

1: f(int a, int b, int c)

2: if(a > 0) then

3: b = 3;

4: c = 5;

5: print a, b, c;

6: end

3/12/09 Eric Mercer & Joel Self

12

a = 0
b = 1
c = 5

a = 1
b = 3

So

a = 0
b = 1

a = 1
b = 1

a = 1
b = 2

S1 S4

a = 1

S7

a = 0
b = 1

S5

S9 S10

a = 1
b = 3
c = 5

S12

S3

Related Work

  M. Bozga and J. Fernandez and L. Ghirvu, State
Space Reduction Based on Live Variables Analysis,
1999

  K. Yorav and O. Grumberg, Static Analysis for
State-Space Reductions Preserving Temporal Logics,
2004

  M. S. Lewis and M. D. Jones, A Dead Variable
Analysis for Explicit Model Checking, 2006

1: f(int a, int b, int c)

2: if(a > 0) then

3: b = 3;

4: c = 5;

5: print a, b, c;

6: end

3/12/09 Eric Mercer & Joel Self

14

2

3

4

5

a > 0 a ≤ 0

2

4

5

b is dead at location 2

b is live at location 2

1: f(int a, int b, int c)

2: if(a > 0) then

3: b = 3;

4: c = 5;

5: print a, b, c;

6: end

3/12/09 Eric Mercer & Joel Self

15

a = 0
b = 1
c = 5

a = 1
b = 3

So

a = 0
b = 1

a = 1
b = 1

a = 1
b = 2

S1 S4

a = 1

S7

a = 0
b = 1

S5

S9 S10

a = 1
b = 3
c = 5

S12

S3

1: f(int a, int b, int c)

2: if(a > 0) then

3: b = 3;

4: c = 5;

5: print a, b, c;

6: end

3/12/09 Eric Mercer & Joel Self

16

a = 0
b = 1
c = 5

a = 1
b = 3

So

a = 0
b = 1

a = 1

S1

a = 1

S7

a = 0
b = 1

S5

S9 S10

a = 1
b = 3
c = 5

S12

S3

  Original DDVA
 Uses forward analysis
 Results dependent on

depth bound
 Does not compute

maximal reduction
 Does not handle loops

3/12/09 Eric Mercer & Joel Self

17

1

10

17
18

start

a is defined

a is redefined

exit

S
tate G

eneration A
long a P

ath

depth = 9 depth = 16

a is used

3/12/09 Eric Mercer & Joel Self

18

Concrete
State Space

1

2

3

4

5

1

2

3

4

5

≤c

≤c

≤c

≤c

≤c

Abstract
State Space

3/12/09 Eric Mercer & Joel Self

19

v is
live Concrete

State Space

Abstract
State Space

v is
live

≤c

s’ s

  Only live if exists concrete trace that requires it to be live

1.  Take a full trace through the system
2.  Apply dead to states in trace to find dead

variables
3.  Mark dead variables
4.  Re-store states in Visited
5.  Resume model checking

3/12/09 Eric Mercer & Joel Self

20

S3 S2

1: f(int a, int b, int c)

2: if(a > 0) then

3: b = 3;

4: c = 5;

5: print a, b, c;

6: end

3/12/09 Eric Mercer & Joel Self

21

a = 0
b = 1
c = 5

a = 1
b = 3

So

a = 0
b = 1

a = 1
b = 1

S1

a = 1
b = 1

S7

a = 0
b = 1

S5

S9 S10

a = 1
b = 3
c = 5

S12

a = 1
b = 2

S4

a = 0
b = 1

3/12/09 Eric Mercer & Joel Self

22

1: a = get_input();
2: c = get_input();
3: if c > 2 then
4: a = 5;
5: print a, b, c;

a:0
c:0

a:1
c:0

a:1
c:3

a:1
c:3

a:5
c:3

a:1
c:2

a:1
c:2

a:1
c:2

1:

2:

3:

4:

5:

Location

3/12/09 Eric Mercer & Joel Self

23

easy3

Analysis Explore Depth
States

Generated Total Time User Time
Memory Used

(MB)
Abstraction

Time Re-store Rate
None N/A 34640 0m12.764s 0m9.969s 34.50 0.0s N/A
Static N/A 15814 0m06.605s 0m5.336s 33.80 0.001s N/A
Original best 2 15814 0m10.765s 0m9.313s 34.46 3.792s N/A
Original worst 2 15814 0m10.765s 0m9.313s 34.46 3.792s N/A
Maximal N/A 10330 0m08.105s 0m7.002s 25.5312 2.017s 1.021
littleBranch

Analysis Explore Depth
States

Generated Total Time User Time
Memory Used

(MB)
Abstraction

Time Re-store Rate
None N/A 864 0m0.442s 0m0.272s 30.90 0.0s N/A
Static N/A 721 0m0.405s 0m0.236s 31.40 0.0010s N/A
Original best 6 658 0m0.344s 0m0.280s 31.43 0.0740s N/A
Original worst 2 721 0m0.340s 0m0.268s 31.43 0.0492s N/A
Maximal N/A 530 0m0.223s 0m0.176s 23.79 0.0138s 1.391
multiBranch

Analysis Explore Depth
States

Generated Total Time User Time
Memory Used

(MB)
Abstraction

Time Re-store Rate
None N/A 294515 1m49.170s 1m28.146s 87.10 N/A N/A
Static N/A 217454 1m21.780s 1m06.084s 74.87 0.002s N/A
Original best 16 176651 1m41.458s 1m27.673s 75.79 42.67s N/A
Original worst 5 217478 2m10.965s 1m55.179s 83.46 46.35s N/A
Maximal N/A 145440 2m36.640s 2m25.453s 57.99 7.51s 1.06

3/12/09 Eric Mercer & Joel Self

24

lexer

Analysis Explore Depth
States

Generated Total Time User Time
Memory Used

(MB)
Abstraction

Time Re-store Rate
None N/A 262843 1m28.391s 1m10.220s 66.90 0.0s N/A
Static N/A 226169 1m17.633s 1m01.876s 66.32 0.002s N/A
Original best 2 225370 1m51.479s 1m34.442s 71.30 31.66s N/A
Original worst 3 226172 1m53.866s 1m36.554s 71.13 33.46s N/A
Maximal N/A 74024 1m45.560s 1m39.382s 37.69 4.898s 1.151
Robot

Analysis Explore Depth
States

Generated Total Time User Time
Memory Used

(MB)
Abstraction

Time Re-store Rate
None N/A 35865 0m12.838s 0m10.205s 35.70 0.0s N/A
Static N/A 27940 0m10.377s 0m8.229s 35.60 0.002s N/A
Original best 2 27940 0m18.675s 0m16.641s 36.21 7.947s N/A
Original worst 2 27940 0m18.675s 0m16.641s 36.21 7.947s N/A
Maximal N/A 27784 0m11.494s 0m09.525s 29.21 0.552s 1.28
bintree

Analysis Explore Depth
States

Generated Total Time User Time
Memory Used

(MB)
Abstraction

Time Re-store Rate
None N/A 157828 1m00.608s 0m49.811s 66.50 0.0s N/A
Static N/A 154084 1m01.061s 0m50.387s 68.40 0.005s N/A
Original best 6 150964 2m14.807s 2m03.864s 73.74 72.09s N/A
Original worst 2 154084 2m07.356s 1m56.635s 71.47 64.87s N/A
Maximal N/A 103839 1m07.530s 1m00.068s 52.62 16.34s 1.012

  Our algorithm generates DVA maximally reduced
state spaces on-the-fly

  Uses less memory
  Requires no user specified depth bound
  Does well on models with loops
  Takes more time on some models
  Due to chained hash table and contains relation

3/12/09 Eric Mercer & Joel Self

25

  Modify to work on multi-procedural programs
  Remove need for chained hash table and contains

relation
  Adapt to other search algorithms
  Other static analysis techniques for precise

abstraction?

3/12/09 Eric Mercer & Joel Self

26

3/12/09 Eric Mercer & Joel Self

27

  Maximum state space reduction from a DVA
For every reachable trace in the concrete state space

there exists an abstract trace such that the states si
in the concrete trace are contained in states si’ in
the abstract trace and si’ is in the abstract state
space.

For all live variables in all states in the abstract state
space, there exists a state in a reachable trace in
the concrete state space where that variable is live
in that state.

3/12/09 Eric Mercer & Joel Self

28

  Static dead variable analysis (SDVA) helps
  SDVA does not use dynamic run-time information

 Variable valuations
 Considers infeasible paths

  Dynamic Dead Variable Analysis (DDVA)
 Uses variable valuation info
 Only considers feasible paths
 Finds more dead variables

3/12/09 Eric Mercer & Joel Self

29

