
Generating Counter-examples through
Randomized Guided Search

Neha Rungta and Eric G. Mercer
Verification and Validation Lab
Computer Science Department
Brigham Young University
Provo, UT - 84602

Acknowledgements

Ira & Mary Lou Fulton for the
Fulton Supercomputing Lab at BYU

Marylou4, cluster of 618 nodes
Among top 50 supercomputers

Acknowledgements

Matt Dwyer at UNL
Suzette Person at UNL

Shmuel Ur at
IBM Research Lab, Haifa

Current Trend

Dual and Quad Core Processors are
becoming increasingly common

Intel’s 80 core prototype

More processors on a single die *

* Image courtesy Intel white paper

Distributed/Parallel Model
Checking

  Exhaustive proof is the heart of model checking
  Enumerate entire behavior space
  Complexity of system limits practical application
  Parallel model checking shows limited promise
  Shift focus to bug-finding (counter-examples)
  Parallel search for bugs using randomization

Contributions

  Low-overhead randomized greedy best-first search
  Empirical study over a very large characterized

Java benchmark suite using JPF 4.0
  Empirical study in Estes

Default Search Order in DFS
Dwyer et al. (FSE ‘06)

•  Search follows a deterministic order

Default Search Order in DFS
Dwyer et al. (FSE ‘06)

•  Order depends on model checker implementation

Default Search Order in DFS
Dwyer et al. (FSE ‘06)

•  Spend all the time in one portion of state graph

Default Search Order in DFS
Dwyer et al. (FSE ‘06)

•  The error may lie along a different path

E

Parallel Randomized DFS
Dwyer et al. (ICSE ‘07)

•  Randomly picks a successor to explore

Parallel Randomized DFS
Dwyer et al. (ICSE ‘07)

•  Randomly picks a successor to explore

Parallel Randomized DFS
Dwyer et al. (ICSE ‘07)

•  Embarrassingly parallel
•  Aim is to find a counterexample

E

Guided Search Basics

  Order state by priority using heuristic
  Replace stack with priority queue in search
  Heuristic type determines type of search:

  greedy best-first: ignores path cost
  best-first: includes current path cost
  A*: includes current path and heuristic is admissible

  We focus on greedy best-first search
  GDS stands for GuiDed Search (greedy best-first)

Default Search order in GDS

12

12

•  Greedy best-first search
•  Uses the heuristic estimate to guide the search

12

Default Search order in GDS

12 10 11

•  Orders states in a PQ based on the rank

12

10 11

Default Search order in GDS

12 10 11 11 11

12

10 11

11 11

•  Priority queue determines ordering

Randomized GDS in JPF

12

12 12

Randomized GDS in JPF

12 10 11

12

10 11

Randomized GDS in JPF

12 10 11 11 11

12

10 11

11 11

•  JPF has an option to randomize successors
•  The priority queue resolves ties

Randomized GDS in JPF

12 10 11 11 11

12

10 11

11 11

•  Controls for default order in siblings
•  Does not control for common heuristic values
•  Not effective in randomizing default order

Randomized GDS in JPF

12 10 11 7 8 11 11

12

10 11

11 11 8 7

•  The error may be along a different path

Randomly pick from n-best

12 10 11 7 8 11 11

Jones and Mercer (SPIN ‘04)

n = 4

•  Picks one of n candidates
•  Does not consider ranking
•  Moderately effective in error discovery

Randomly pick from n-best

12 10 11 7 8 11 11

Jones and Mercer (SPIN ‘04)

N = 4

•  Disregards the heuristic ranking

Randomly pick from n-best

12 10 11 7 8 11 11

Jones and Mercer (SPIN ‘04)

N = 4

•  Disregards the heuristic ranking

11 11 11 11 11 11 11

Randomly pick from n-best
Jones and Mercer (SPIN ‘04)

n = 4

•  Does not randomize all heuristic ties
•  Not effective in Java benchmarks in JPF

Unable to counter default order

 Both techniques are insufficient
 Comparison to GDS with default order
 Empirical analysis of the RGDS techniques
 No statistical difference for most examples
 Results for existing RGDS omitted

Scope of this work

 Focuses on a greedy best-first search
 Best-first search with inadmissible heuristics
 Results of A* not significantly affected

Our Randomized GDS

77 12 12

•  Add a random value as a secondary key

12

77

Our Randomized GDS

12

10 11

77

54 100

12 10 11

54 100

Our Randomized GDS

12

10

11

11

11

77

54 100

137 79

12 10 11

100
•  Secondary key used to break heuristic ties

Our Randomized GDS

12 10 11 11 11

12

10

11

11

11

77

54 100

137 79

100 137 79
•  Secondary key used to break heuristic ties

Our Randomized GDS

12

10

11

11

11

108

92 2

85 44

12 10 11 11 11

44 85 2
•  Embarrassingly Parallel
•  Scales to Arbitrary Number of Nodes

Research Question

  Does the randomized GDS perform better than
guided search with default search order?

  Compare default order to randomized GDS
  Published Java heuristics and models in JPF v4.0
  Distance heuristics in Estes on Barbershop model
  100 trials of randomized GDS on each model
  One hour time bound
  7 GB RAM for JPF and 2 GB for Estes

Empirical study

 Marylou4: Cluster of 618 nodes
 Two dual core processors per node (2.6 GHz)
  Intel EM64T processors
  JPF v4.0 for Java Benchmarks
 Estes model checker for C models

Empirical Study

 100 trails of randomized GDS in parallel
 Time bounded for 1 hour
 7 GB of RAM for the trials in JPF
 2 GB of RAM for the trials in Estes

Independent Variables

 Heuristics in JPF
 Distance heuristics in Estes
 Subjects with concurrency errors
 Used in extensive benchmarking studies

(Dwyer et al. FSE ‘06)
(Rungta and Mercer SEFM ‘07)

Dependent Variables

 Path Error Density, the ratio of error finding
RGDS trials over total number of trials

 Number of states generated

JPF Results

Model PED
RGDS

Avg. States
GDS
States

RaxExtended(4,3) 1.00 20,774 1,225,743*

Twostage(6,1) 0.94 486,830 716,413

Piper(2,4,4) 0.87 1,229,530 2,478,360*

Reorder(10,1) 0.00 - 1,727,521

JPF Results

Model PED
RGDS

Avg. States
GDS
States

RaxExtended(4,3) 1.00 20,774 1,225,743*

Twostage(6,1) 0.94 486,830 716,413

Piper(2,4,4) 0.87 1,229,530 2,478,360*

Reorder(10,1) 0.00 - 1,727,521

JPF Results

Model PED
RGDS

Avg. States
GDS
States

RaxExtended(4,3) 1.00 20,774 1,225,743*

Twostage(6,1) 0.94 486,830 716,413

Piper(2,4,4) 0.87 1,229,530 2,478,360*

Reorder(10,1) 0.00 - 1,727,521

Estes Results for Barbershop(9)

Heuristic PED
RGDS

Avg. States
GDS
States

FSM (Edelkamp and
Mehler MoChart ‘04) 0.59 785,698 492,166

EFSM (Rungta and
Mercer ASE ‘05) 0.65 816,848 17,537

E-FCA (Rungta and
Mercer FMCAD ‘06) 1.00 1,692 814

Evaluation

 RDFS and RGDS overcome default order
 RDFS provides a good lower bound on

hardness (Rungta and Mercer, SEFM ‘07)
 Heuristics are restricted to a class of subjects
 RDFS ideal comparison for RGDS

Research Question

  How does randomized GDS compare with
randomized DFS?

  Published Java heuristics and models in JPF v4.0
  Distance heuristics in Estes and C versions of select models
  100 trials of randomized GDS and Randomized DFS
  One hour time bound
  7 GB RAM for JPF and 2 GB for Estes
  Bounded queue of 100,000 states (arbitrary choice)

Empirical Study

 Similar set up as previous study
 100 trials of RDFS and RGDS
 1 hour time bounded
 Size of the frontier in RGDS prohibitive
 Bounded the Queue at 100,000 states

(arbitrary choice)

Possibly Prune the Bug?

 Yes! But…
 Otherwise run out of memory (10 to 30 mins)

Independent Variables

 Pick subjects characterized as “hard”
(Rungta and Mercer SEFM ‘07)

 Models where RDFS struggles

Dependent Variables

 Path Error Density
 Number of states generated
 Time Taken before Error Discovery
 Length of the Counterexample
 Total Memory usage
 Minimum, Average, and Maximum values

Normalization

 Min, Avg, and Max normalized to 0 and 1
 Minimum is normalized to 1.00
 Maximum is normalized to 0.00
 All other values are in between
 Process conducted for each metric separately
 Allows better understanding on same scale

PED for Prefer-thread

Model RDFS RGDS

ProdCons(1,16,4) 0.67 0.87

TwoStage(7,1) 0.41 0.73

WrongLock(1,20) 0.28 0.81

Reorder(10,1) 0.00 0.34

PED for Prefer-thread

Model RDFS RGDS

ProdCons(1,16,4) 0.67 0.87

TwoStage(7,1) 0.41 0.73

WrongLock(1,20) 0.28 0.81

Reorder(10,1) 0.00 0.34

PED for Prefer-thread

Model RDFS RGDS

ProdCons(1,16,4) 0.67 0.87

TwoStage(7,1) 0.41 0.73

WrongLock(1,20) 0.28 0.81

Reorder(10,1) 0.00 0.34

PED for Prefer-thread

Model RDFS RGDS

ProdCons(1,16,4) 0.67 0.87

TwoStage(7,1) 0.41 0.73

WrongLock(1,20) 0.28 0.81

Reorder(10,1) 0.00 0.34

Scatter Plot on All Dependents

Path Error Density Scatter Plot

Length of Counter Example

Time Taken for error discovery

Number of States Generated

Memory Usage

Priority Queue
uses memory!

PED for Most-Blocked

Model RDFS RGDS

Piper(2,4,,4) 1.00 1.00

Piper(2,8,4) 0.96 0.00

Clean(10,10,1) 0.96 0.00

Piper(2,16,8) 0.00 0.00

PED for Most-Blocked

Model RDFS RGDS

Piper(2,4,,4) 1.00 1.00

Piper(2,8,4) 0.96 0.00

Clean(10,10,1) 0.96 0.00

Piper(2,16,8) 0.00 0.00

PED for Most-Blocked

Model RDFS RGDS

Piper(2,4,,4) 1.00 1.00

Piper(2,8,4) 0.96 0.00

Clean(10,10,1) 0.96 0.00

Piper(2,16,8) 0.00 0.00

Estes results

Model RDFS RGDS
Airline(10,1) 0.18 1.00
Piper(2,8,4) 0.07 1.00

 E-FCA distance heuristic
(Rungta and Mercer FMCAD ‘06)

Conclusions

 Randomization is a good thing
 Embarrassingly parallel
 Helps models well matched to heuristics
 Generally better than RDFS
 Uses the computation resources effectively

Future Work

 Better characterization of benchmarks:
syntactic measures with low cost computation

 Static analysis to match heuristics to models
 Better use of randomness to improve error

discovery
 BEEM (DiViNE models) characterization and

Java/C implemenations

Future Work

 Converting Java benchmarks in C models
 Creating hard C models for RDFS in Estes
 Comparing FSM with JPF heuristics
 Models where JPF heuristics perform poorly
 Coverage obtained by RGDS
 Heuristics that work well with randomization
 Characterize heuristics for specific domains

Questions

Verification and Validation Lab
Computer Science Department

Brigham Young University
Provo, Utah

Neha Rungta: neha@cs.byu.edu
Eric G. Mercer: eric.mercer@byu.edu

http://vv.cs.byu.edu

