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Current Trend 

Dual and Quad Core Processors are 
becoming increasingly common 

Intel’s 80 core prototype 

More processors on a single die * 

* Image courtesy Intel white paper  



Distributed/Parallel Model 
Checking 

  Exhaustive proof is the heart of model checking 
  Enumerate entire behavior space  
  Complexity of system limits practical application 
  Parallel model checking shows limited promise 
  Shift focus to bug-finding (counter-examples) 
  Parallel search for bugs using randomization 



Contributions 

  Low-overhead randomized greedy best-first search 
  Empirical study over a very large characterized 

Java benchmark suite using JPF 4.0 
  Empirical study in Estes 



Default Search Order in DFS 
Dwyer et al. (FSE ‘06) 

•  Search follows a deterministic order 



Default Search Order in DFS 
Dwyer et al. (FSE ‘06) 

•  Order depends on model checker implementation 



Default Search Order in DFS 
Dwyer et al. (FSE ‘06) 

•  Spend all the time in one portion of state graph  



Default Search Order in DFS 
Dwyer et al. (FSE ‘06) 

•  The error may lie along a different path 
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Parallel Randomized DFS 
Dwyer et al. (ICSE ‘07) 

•  Randomly picks a successor to explore 



Parallel Randomized DFS 
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Parallel Randomized DFS 
Dwyer et al. (ICSE ‘07) 

•  Embarrassingly parallel 
•  Aim is to find a counterexample 

E 



Guided Search Basics 

  Order state by priority using heuristic 
  Replace stack with priority queue in search 
  Heuristic type determines type of search: 

  greedy best-first: ignores path cost 
  best-first: includes current path cost 
  A*: includes current path and heuristic is admissible 

  We focus on greedy best-first search 
  GDS stands for GuiDed Search (greedy best-first)  



Default Search order in GDS 
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•  Greedy best-first search 
•  Uses the heuristic estimate to guide the search 
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Default Search order in GDS 
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•  Orders states in a PQ based on the rank 
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Default Search order in GDS 
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•  Priority queue determines ordering 



Randomized GDS in JPF 
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Randomized GDS in JPF 
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•  JPF has an option to randomize successors 
•  The priority queue resolves ties 



Randomized GDS in JPF 
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•  Controls for default order in siblings 
•  Does not control for common heuristic values 
•  Not effective in randomizing default order 



Randomized GDS in JPF 
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•  The error may be along a different path  



Randomly pick from n-best 

12 10 11 7 8 11 11 

Jones and Mercer (SPIN ‘04) 

n = 4 

•  Picks one of n candidates  
•  Does not consider ranking 
•  Moderately effective in error discovery 



Randomly pick from n-best 

12 10 11 7 8 11 11 

Jones and Mercer (SPIN ‘04) 

N = 4 

•  Disregards the heuristic ranking 
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Jones and Mercer (SPIN ‘04) 

N = 4 

•  Disregards the heuristic ranking 
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Randomly pick from n-best 
Jones and Mercer (SPIN ‘04) 

n = 4 

•  Does not randomize all heuristic ties 
•  Not effective in Java benchmarks in JPF 



Unable to counter default order 

 Both techniques are insufficient 
 Comparison to GDS with default order 
 Empirical analysis of the RGDS techniques 
 No statistical difference for most examples 
 Results for existing RGDS omitted  



Scope of this work 

 Focuses on a greedy best-first search 
 Best-first search with inadmissible heuristics 
 Results of A* not significantly affected 



Our Randomized GDS 
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•  Add a random value as a secondary key 
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Our Randomized GDS 
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100 
•  Secondary key used to break heuristic ties 
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Our Randomized GDS 
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85 44 

12 10 11 11 11 

44 85 2 
•  Embarrassingly Parallel 
•  Scales to Arbitrary Number of Nodes 



Research Question 

  Does the randomized GDS perform better than 
guided search with default search order? 

  Compare default order to randomized GDS 
  Published Java heuristics and models in JPF v4.0 
  Distance heuristics in Estes on Barbershop model 
  100 trials of randomized GDS on each model 
  One hour time bound 
  7 GB RAM for JPF and 2 GB for Estes 



Empirical study 

 Marylou4: Cluster of 618 nodes 
 Two dual core processors per node (2.6 GHz) 
  Intel EM64T processors 
  JPF v4.0 for Java Benchmarks 
 Estes model checker for C models 



Empirical Study 

 100 trails of randomized GDS in parallel 
 Time bounded for 1 hour 
 7 GB of RAM for the trials in JPF 
 2 GB of RAM for the trials in Estes  



Independent Variables 

 Heuristics in JPF 
 Distance heuristics in Estes 
 Subjects with concurrency errors 
 Used in extensive benchmarking studies 

(Dwyer et al. FSE ‘06) 
(Rungta and Mercer SEFM ‘07) 



Dependent Variables 

 Path Error Density, the ratio of error finding 
RGDS trials over total number of trials  

 Number of states generated 



JPF Results 

Model PED 
RGDS 

Avg. States 
GDS 
States 

RaxExtended(4,3) 1.00 20,774 1,225,743* 

Twostage(6,1) 0.94 486,830 716,413 

Piper(2,4,4) 0.87 1,229,530 2,478,360* 

Reorder(10,1) 0.00 - 1,727,521 
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Estes Results for Barbershop(9) 

Heuristic PED 
RGDS 

Avg. States 
GDS 
States 

FSM (Edelkamp and 
Mehler MoChart ‘04) 0.59 785,698 492,166 

EFSM (Rungta and 
Mercer ASE ‘05) 0.65 816,848 17,537 

E-FCA (Rungta and 
Mercer FMCAD ‘06) 1.00 1,692 814 



Evaluation 

 RDFS and RGDS overcome default order 
 RDFS provides a good lower bound on 

hardness (Rungta and Mercer, SEFM ‘07) 
 Heuristics are restricted to a class of subjects 
 RDFS ideal comparison for RGDS 



Research Question 

  How does randomized GDS compare with 
randomized DFS? 

  Published Java heuristics and models in JPF v4.0 
  Distance heuristics in Estes and C versions of select models 
  100 trials of randomized GDS and Randomized DFS 
  One hour time bound 
  7 GB RAM for JPF and 2 GB for Estes 
  Bounded queue of 100,000 states (arbitrary choice) 



Empirical Study   

 Similar set up as previous study 
 100 trials of RDFS and RGDS 
 1 hour time bounded 
 Size of the frontier in RGDS prohibitive 
 Bounded the Queue at 100,000 states 

(arbitrary choice) 



Possibly Prune the Bug? 

 Yes! But… 
 Otherwise run out of memory (10 to 30 mins)  



Independent Variables 

 Pick subjects characterized as “hard” 
(Rungta and Mercer SEFM ‘07) 

 Models where RDFS struggles 



Dependent Variables 

 Path Error Density 
 Number of states generated 
 Time Taken before Error Discovery 
 Length of the Counterexample 
 Total Memory usage 
 Minimum, Average, and Maximum values 



Normalization 

 Min, Avg, and Max normalized to 0 and 1 
 Minimum is normalized to 1.00 
 Maximum is normalized to 0.00 
 All other values are in between 
 Process conducted for each metric separately 
 Allows better understanding on same scale 



PED for Prefer-thread 

Model RDFS RGDS 

ProdCons(1,16,4) 0.67 0.87 

TwoStage(7,1) 0.41 0.73 

WrongLock(1,20) 0.28 0.81 

Reorder(10,1) 0.00 0.34 
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Scatter Plot on All Dependents 



Path Error Density Scatter Plot 



Length of Counter Example 



Time Taken for error discovery 



Number of States Generated 



Memory Usage 

Priority Queue 
uses memory! 



PED for Most-Blocked 

Model RDFS RGDS 

Piper(2,4,,4) 1.00 1.00 

Piper(2,8,4) 0.96 0.00 

Clean(10,10,1) 0.96 0.00 

Piper(2,16,8) 0.00 0.00 
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Estes results 

Model RDFS RGDS 
Airline(10,1) 0.18 1.00 
Piper(2,8,4) 0.07 1.00 

 E-FCA distance heuristic 
(Rungta and Mercer FMCAD ‘06) 



Conclusions 

 Randomization is a good thing 
 Embarrassingly parallel 
 Helps models well matched to heuristics 
 Generally better than RDFS 
 Uses the computation resources effectively 



Future Work 

 Better characterization of benchmarks: 
syntactic measures with low cost computation 

 Static analysis to match heuristics to models 
 Better use of randomness to improve error 

discovery 
 BEEM (DiViNE models) characterization and 

Java/C implemenations 



Future Work 

 Converting Java benchmarks in C models 
 Creating hard C models for RDFS in Estes 
 Comparing FSM with JPF heuristics 
 Models where JPF heuristics perform poorly 
 Coverage obtained by RGDS 
 Heuristics that work well with randomization 
 Characterize heuristics for specific domains 



Questions 

Verification and Validation Lab  
Computer Science Department 
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Provo, Utah  

Neha Rungta: neha@cs.byu.edu 
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