
Hardness for Explicit State Software Model Checking Benchmarks

Neha Rungta
Department of Computer Science

Brigham Young University
Provo, UT 84601
neha@byu.edu

Eric G. Mercer
Department of Computer Science

Brigham Young University
Provo, UT 84601

eric.mercer@byu.edu

Abstract

Directed model checking algorithms focus computation
resources in the error-prone areas of concurrent systems.
The algorithms depend on some empirical analysis to re-
port their performance gains. Recent work characterizes
the hardness of models used in the analysis as an estimated
number of paths in the model that contain an error. This
hardness metric is computed using a stateless random walk.
We show that this is not a good hardness metric because
models labeled hard with a stateless random walk metric
have easily discoverable errors with a stateful randomized
search. We present an analysis which shows that a hardness
metric based on a stateful randomized search is a tighter
bound for hardness in models used to benchmark explicit
state directed model checking techniques. Furthermore, we
convert easy models into hard models as measured by our
new metric by pushing the errors deeper in the system and
manipulating the number of threads that actually manifest
an error.

1 Introduction

Model checking is a formal approach for systematically
exploring the behavior of a concurrent software system to
verify whether the system satisfies the user specified prop-
erties [21, 13]. A model of a concurrent software system is a
transition graph that consists of states and transitions. Each
state in the transition graph is a snapshot of the program
condition which consists of the values of all variables at a
specific program location; while the transitions in the graph
are rules that represent the change in the program condition
from one state to another.

Exhaustive search techniques such as breadth-first search
(BFS) or depth-first search (DFS) are commonly used to
explore all the states in the transition graph. Starting from
an initial state, the search technique computes the enabled
transitions at each state to generate and explore the possible

successors in either a breadth-first or depth-first manner.
A path or state in the transition graph that violates a user

specified property is known as an error in the model. Since
model checking considers all possible thread interactions,
it enables us to find subtle concurrency errors deep in the
execution trace. These errors are hard to detect in a tradi-
tional validation technique based on test vector generation
because scheduling decisions cannot be controlled by the
input vectors.

The primary challenge in model checking is managing
the size of the transition graph. The increase in the size of
the transition graph is also known as the state space explo-
sion. For large software systems, the computation resources
are exhausted before a search finishes exploring the transi-
tion graph. Directed model checking is one solution to the
state space explosion problem. It aims to guide the search
to parts of the transition graph where errors are more likely
to exist [11, 22, 7, 27, 23]. It assumes an error exists in the
software, and the goal is to find the error before it runs out
of computational resources (time or memory).

Directed model checking techniques use heuristics to
rank the states in order of interest with states estimated to
be near errors explored before the other states. The perfor-
mance of a given heuristic estimate is compared to existing
heuristic functions, or a DFS, with an empirical analysis. A
reduction in the number of states generated and a decrease
in the total time taken before error discovery are two com-
monly used metrics to measure performance gains of a di-
rected model checking technique.

The reliance of directed model checking algorithms on
an empirical analysis to assess and validate the performance
gains of a given technique motivates a need to characterize
the quality of models used in such an analysis. The set of
models used to benchmark directed model checking should
at least be computationally expensive for simple variants
of DFS or BFS techniques. In other words, if the baseline
model checking algorithm easily solves a benchmark for di-
rected model checking, then the benchmark is not success-
ful or useful in delineating performance. There is a need

1

to classify and characterize benchmarks for directed model
checking to control for this situation. We believe that un-
derstanding the benchmarks improves understanding in the
algorithm.

The work in [6] is the pioneering research in character-
izing the hardness of benchmarks for directed model check-
ing. The benchmarks are guaranteed to contain an error and
the goal is to rank the benchmarks in terms of effort, time
and memory, required for error discovery. The work in [6]
presents the traditional syntactic metrics for hardness in a
set of Java benchmarks such as thread count, class count,
location count, etc., and it then defines a semantic hardness
metric as a lower bound on the estimated number of paths in
the model that contain errors. The lower bound is computed
by conducting a large number of stateless random walks on
the model. Follow on work in [5] shows that only 5 to 20
non-deterministic DFS trials are required to guarantee that
one DFS trial successfully discovers the error. The DFS
trial results are reported on a set of seven models that are
classified as hard by the semantic metric for directed model
checking in [6]. The results in [5] contradict the intuition
that a hard model used for benchmarking directed model
checking needs to minimally challenge basic search tech-
niques and indicates that the reported lower bound on the
hardness for these models in [6] is not sufficient.

To provide a semantic metric with a tighter bound on
the estimated number of errors in a benchmark for explicit
state directed model checking, we define a new hardness
metric that is computed by conducting a large number of
non-deterministic DFS trials. To test the effectiveness of
this new hardness metric, we conduct an analysis on a set of
36 models that have not been previously analyzed with non-
deterministic DFS trials. In a large subset of the 36 models
that have a low estimated number of errors as computed by
random walk, all non-deterministic DFS trials conducted
are successful in finding an error. The large performance
gap between a random walk and non-deterministic DFS in-
dicates that a hardness metric based on non-deterministic
DFS trials is a better starting baseline measure of hardness
than the one computed using random walk.

To aid researchers in designing hard benchmarks, we
identify certain factors that control the hardness in models
as measured by the new semantic hardness metric. Tradi-
tionally, the total number of threads is a syntactic measure
of hardness used when evaluating directed model checking
approaches. Our analysis indicates, however, that arbitrarily
increasing the total number of threads in the model does not
necessarily challenge the new hardness measure. In fact we
create two versions of several models with the same num-
ber of total threads that have diametrically opposite hard-
ness values as measured by the new metric. As such, we
show that the type of threads that cause errors to be discov-
ered and the depth at which errors occur in the transition

graph are two controlling factors that affect the hardness
measure. We present evidence for these factors in making
seemingly easy models into hard models by systematically
varying these factors in the models.

The main contributions of this paper are: (1) Defin-
ing non-deterministic DFS (randomized DFS) as a tighter
bound on the hardness of a model when compared to ran-
dom walk, (2) Showing correlation between error discover-
ing threads and depth of errors with the hardness of models,
and (3) Characterizing a set of existing benchmarks as well
as creating hard benchmarks based on the new metric.

2 Background and Motivation

Recent work in [6] defines path error density as a con-
servative probability estimate on the number of paths in a
model that contain an error. This estimate is a lower bound
on the total number of paths that actually contain an er-
ror in the model. To compute the path error density, a
large number of independent random walks are conducted
on the model. The probability estimate is the ratio of ran-
dom walks that find an error to the total number of random
walks. This estimate is assigned as the path error density of
the model. The path error density of an easy model is close
to one if a large number of random walks find an error. This
demonstrates that there is a high probability of finding an
error along an arbitrary path in the program which makes
the model extremely easy in terms of error discovery. Con-
versely, the path error density of a hard model is close to
zero if only a few random walks are successful in finding
an error. The work in [6] also reports syntactic metrics, like
lines of code and thread count, on the models used in their
study. The study shows that syntactic metrics are not able
to predict path error density values. A model that looks
syntactically hard may actually be semantically easy. This
syntax-semantic gap creates a need for a semantic metric,
like path error density, to classify benchmarks for directed
model checking until we better understand the relationship
between syntax and error discovery.

Random walk is a stateless search technique that does
not store information on states that are already explored. In
Figure 1(a), we present the pseudo-code for a pure random
walk with no backtracking. Starting from an initial start
state (s0), a random walk explores a sequence of states in
the transition graph expanding a random successor at each
state in the path (lines 4−7 and 11). If the random walk en-
counters an error, it reports the error (lines 8−10); however,
when the random walk reaches a node with no successors
or a depth greater than the specified depth bound (line 5), it
simply terminates the search (line 12).

The path error density does not provide a tight bound on
the estimated number of paths in a model that contain an
error due to the inherent limitations of random walk. New

procedure Random Walk Init(s0)
1: s := s0, depth := 0
2: Random Walk(s, depth)
3:

procedure Random Walk(s, depth)
4: Xsucc := get successors(s)
5: while (Xsucc 6= ∅ or depth ≤ depth bound) do
6: s := get random element(Xsucc)
7: depth := depth + 1
8: if error(s) then
9: print “1 Error Found”

10: return
11: Xsucc := get successors(s)
12: print “No Errors on this Path”

procedure Random DFS Init(s0)
1: Visited := {s0}
2: Random DFS(s0, V isited)
3:

procedure Random DFS(s, V isited)
4: if (within time bound()) then
5: if error(s) then
6: print “1 Error Found”
7: exit
8: Xsucc := get successors(s)
9: randomize elements(Xsucc)

10: for each s′ ∈ Xsucc do
11: if s′ 6∈ V isited then
12: V isited := V isited ∪ {s′}
13: Random DFS(s′, V isited)
14: else
15: print “Out of Time”

(a) (b)

Figure 1. Pseudo-code for randomized search techniques (a) True random walk with no backtracking
(b) DFS with a randomized transition order

research in [20] shows that the total coverage obtained by
a pure random walk is largely dependent on the structure
of the graph. It also shows that coverage of the random
walk increases logarithmically with the number of compu-
tation steps; thus, during the initial phase of the random
walk, a large number of new states are visited, but with
time, the number of newly visited states decreases rapidly.
Experimental analysis indicates that the coverage achieved
by pure random walk ranges between 100% to 1% for tran-
sition graphs commonly used in model checking [15, 4, 2].
In models where pure random walk achieves medium to low
coverage, the path error density measure does not accurately
reflect the effort required in finding an error in the model
because the coverage is so sporadic.

The work in [5] shows that a parallel randomized state-
space search (PRSS) is very effective in finding errors for
models of [6] with relatively low path error densities. In-
tuitively, PRSS runs independent randomized DFS trials in
parallel to discover an error. A randomized DFS is simply
a variant of the rudimentary DFS that randomizes the order
of its successors in the search. The PRSS approach com-
putes the required number of nodes such that with every
node running a randomized DFS trial in parallel at least one
node finds the error in the model.

In Figure 1(b), we present the pseudo-code for a random-
ized DFS. It explores a sequence of states starting from the
start state (s0), where at each state it generates a set of all
possible successors, randomizes their order, and picks one
successor to explore in a depth-first manner (lines 8 − 13).
When the search encounters a node with no successors, it
backtracks to the next node in the list of randomized succes-

sors. A randomized DFS is a stateful search technique that
maintains a set of visited states to track every explored state
(lines 10−11). The randomized DFS terminates when an er-
ror state is encountered (lines 4−7) or reaches the specified
time bound (lines 4 and 14 − 15). Note that the algorithm
for the randomized DFS presented in Figure 1(b) assumes
that the model contains an error. Memory resources limit
the amount of time a randomized DFS trial can run. Un-
like a random walk, memory in a randomized DFS trial is
exhausted if it is run long enough. For seven subjects pre-
sented in [6] with a relatively low path error density, the
PRSS requires only between 5 to 20 nodes to guarantee er-
ror discovery in at least one randomized DFS trial [5]. This
is counterintuitive since the models labeled hard seem so
easy.

A hard model should at least challenge a randomized
DFS which is a basic search technique used in model check-
ing tools. It is counterintuitive for a small number of parallel
randomized DFS trials in the PRSS approach to consistently
discover errors in supposedly hard models. This contradic-
tion motivates a need for defining a better notion of hardness
in models for benchmarking path analyses techniques and
model checking algorithms. We especially need this met-
ric to characterize and classify benchmarks for comparative
studies in explicit state directed model checking.

3 Error Density Measure

The path error density based on a stateless random walk
underestimates the hardness of models for benchmarking
stateful directed model checking algorithms. Specifically,

it tends to label models hard even when the error discov-
ery is trivial with a stateful randomized DFS. A hard model
used for benchmarking directed model checking algorithms
needs to at least be computationally expensive in terms of
time and space for a stateful randomized DFS. To demon-
strate the utility of having a stateful hardness measure, we
re-run the PRSS analysis for 36 models in [6]; however,
instead of computing the number of nodes required to run
randomized DFS in parallel to guarantee at least one node
finds an error, we record the number of randomized DFS
trials that encounter an error.

Based on randomized DFS trials, we define a new hard-
ness metric, the observed randomized-DFS (R-DFS) error
density which is the ratio of the randomized DFS trials that
find an error to the total number of randomized DFS tri-
als conducted. Since the observed R-DFS error density is
based on a stateful search, it provides a tighter bound on
the hardness of models for benchmarking explicit state di-
rected model checking algorithms compared to path error
density which is computed using random walk. The under-
lying assumption is that randomized DFS always achieves
better coverage of a transition graph compared to a random
walk. We do not consider comparisons with BFS because
variants of BFS often have prohibitively large frontier sizes
that render BFS techniques ineffective for error discovery
in the benchmark set.

3.1 Experiment Design

To compare path error density and observed R-DFS error
density we conduct random walk and randomized DFS tri-
als on a cluster of 618 nodes. Every node in the cluster has 8
GB of RAM and two Dual-core Intel Xeon EM64T proces-
sors (2.6 GHz). The execution time for a single randomized
DFS trial is bounded at one hour. We pick the time bound
to be consistent with the other recent studies [6, 5]. Later in
this section we also study the affects of changing the time
bound. The programs in this study are compiled using Java
1.5 and verified by the Java PathFinder (JPF) v4.0 model
checker with partial order reduction turned on [28].

For each model in test we conduct 100 randomized DFS
trials to compute its semantic hardness. We experimented
with different number of trials to pick an upper bound on
the required number of trials for predicting the semantic
hardness. For the models in our test suite we found that
100 trials are sufficient to compute the semantic hardness.
To compute the path error density, we execute 10,000 trials
of random walk, where one trial is a single random walk
execution or single path in the program. The original study
of [6] uses between 1000 and 10,000 random walk trials to
estimate the path error density of the model.

3.1.1 Independent Variable

We vary models, the independent variable, in our study
to test whether randomized DFS provides a tighter bound
on hardness of benchmarks used in explicit state directed
model checking. We conduct the study on a set of 36 models
used in the benchmarking analysis of [6] and have not been
previously analyzed with a randomized DFS. The set of
benchmarks encompasses a wide variety of Java programs
with concurrency errors. The test suite includes programs
derived from concurrency literature, small to medium-sized
realistic programs, models designed to exhibit Java-specific
errors described in [10], and models developed at IBM to
support their analyses research [9]. Many models have been
made parameterizable to control the number of threads for
studying their effect on the path error density.

3.1.2 Dependent Variables and Measures

The dependent variables in this study are the path error den-
sity and the observed R-DFS error density values. We com-
pute the values of the path error density rather than report
the values in [6]1. We also compute the observed R-DFS er-
ror density which is the ratio of randomized DFS trials that
find an error over the total number of randomized DFS trials
executed. On the scale of hardness, an observed R-DFS er-
ror density of 1.00 indicates an extremely easy model while
an observed R-DFS error density of 0.00 indicates a very
hard model. Note that this scale is consistent with the path
error density hardness scale of [6] where probabilities close
to one indicate easy models whereas probabilities close to
zero indicate hard models. We measure the number of states
generated during the randomized DFS trials to gain a better
understanding on the effort required for error discovery by
the randomized DFS trials in terms of time and memory re-
sources.

3.2 Results

The results of the study are presented in Table 1 where
the first column indicates the name of the subject, and the
maximum number of threads created in the subject is indi-
cated in the parenthesis (Name(Thread Num)). The second
column specifies the input parameters (Params) used by the
subject (see [6] for parameter details and other syntactic
metrics such as thread count, class count, location count,
etc.). In the section of Table 1 labeled randomized DFS tri-
als, we present four statistics: the observed R-DFS error
density, the minimum and maximum number of states gen-
erated in a single trial of randomized DFS among the error
discovering trials, and the average number of states gener-
ated across all randomized DFS trials that find an error.

1The values in [6] are computed on JPF3.1.2 while we do our analysis
on JPF4.0.

Table 1. Comparing path error density and randomized DFS
Subject Randomized DFS trials

Name(Thread Num) Params Path error observed R-DFS Number of States
density[6] error density Minimum Average Maximum

Account-NoDeadlkCk(6) none 0.549 1.00 182 27,928 1,089,171
Account-NoExcpCk(6) none 0.077 0.48 405 1,749,259 13,151,326
AccountSubtype(10) 8,1 0.152 0.34 250 248,714 3,245,340
Airline(21) 20,8 0.069 0.49 101 571,214 6,479,374
Airline(7) 6,2 0.030 1.00 40 226,846 5,112,586
Airline(7) 6,1 0.003 1.00 50 1,618,915 6,401,539
Airline(21) 20,2 0.000 0.01 5,249 5,249 5,249
Alarm Clock(4) 9 0.093 1.00 28 112 288
Alarm Clock(4) 4 0.083 1.00 41 111 147
AllocateVector(3) 8,20,1 0.441 0.99 33 198,206 4,623,001
AllocateVector(3) 2,20,4 0.294 1.00 34 5,646 143,866
AllocateVector(3) 2,20,1 0.084 1.00 34 4,832 7,773
AllocateVector(3) 2,100,1 0.017 1.00 34 28,406 40,248
Clean(21) 10,10,1 0.289 0.96 206 283,357 5,497,056
Clean(3) 1,1,12 0.033 1.00 12 907 987
Deadlock(3) 1 0.450 1.00 12 17 33
Deadlock(3) 2 0.379 1.00 5 6 8
Deos(4) abstracted 0.190 1.00 7 747 2,638
LinkedlistSync(5) 4,100 0.000 1.00 9,324 10,014 12,351
Piper(17) 2,8,4 0.083 0.96 146 621,340 7,921,766
Piper(9) 2,4,4 0.029 1.00 1,611 189,872 1,288,076
ProducerConsumer(11) 2,8,4 0.967 1.00 127 261 12,334
ProducerConsumer(7) 2,4,4 0.956 1.00 97 116 372
ProducerConsumer(5) 2,2,4 0.768 1.00 93 112 210
RaxExtended(6) 2,3 0.128 1.00 25 1,783 19,502
Reorder(3) 1,1 0.030 1.00 16 55 80
Reorder(7) 1,5 0.043 1.00 15 49,151 65,490
ReplicatedWorkers(9) 8,2,0,10,.001 0.948 0.97 1,739 1,801 1,866
RWNoExcepChk(5) 2,2,100 0.769 0.80 52 533 2,031
TwoStage(3) 1,1 0.043 1.00 20 57 127
TwoStage(8) 2,5 0.028 1.00 30 1,759,759 3,702,115
TwoStage(5) 2,2 0.022 1.00 34 3,301 8,638
WrongLock(12) 10,1 0.478 1.00 61 94 167
WrongLock(12) 1,10 0.200 1.00 25 1,574,058 2,966,459
WrongLock(3) 1,1 0.068 1.00 13 25 43

The analysis in Table 1 shows that for a large number of
models that have near zero path error densities with random
walk, almost all of the randomized DFS trials find an error.
For example, the model Clean with parameters (1,1,12)
has a path error density of 0.033 while its observed R-DFS
error density is 1.00. The parameterized versions of the
TwoStage and Reordermodels have a path error density
of less than 0.050 but have an observed R-DFS error density
of 1.00. In 26 examples presented in Table 1 out of the total
36 subjects, all 100 trials of randomized DFS find an error.
Furthermore, in some models with a low path error density
and high observed R-DFS error density, the minimum and
average number of states generated in the randomized tri-
als is very small. This indicates that the computation cost
in terms of memory for error discovery in these models is
very low. Fourteen models with an observed R-DFS error
density of 1.00 generate less than 1000 average states be-
fore error discovery. In fact, some models like TwoStage
with parameters (1,1) and ProducerConsumer with pa-
rameters (2,4,4) generate a maximum of only 127 states and
372 states respectively in a single randomized DFS trial out

of the 100 trials. The small state counts further show for
these models that a stateful search technique is effective in
finding an error when compared to random walk.

The fact that most models have a hardness of 1.00 un-
der the observed R-DFS error density metric shows that the
set of models used in [6] severely lacks in diversity when
evaluating directed model checking approaches. It also in-
dicates that the more varied distribution of hardness values
computed by the path error density in [6] is not representa-
tive of the amount of effort required to find errors in these
models with stateful search methods.

The examples in Table 1 that appear hard in terms of
the observed R-DFS error density are interesting to study
in order to identify factors that cause a low observed
R-DFS error density in the models. For example, the
Accountsubtype model with parameters (8,1) is a mod-
erately hard model with an observed R-DFS error density
of 0.34, and the average number of states generated be-
fore error discovery is significant. Further examination of
the Accountsubtype model may assist in identifying
the factors affecting the low observed R-DFS error density.

There are two other parameterized subjects that have a low
observed R-DFS error density: Airline with parameters
(20,2) and Piper with parameters (2,16,8). These are in-
teresting subjects because other parameterized versions of
these models have a high observed R-DFS error density. For
example, Piper with parameters (2,4,4) and Airline
with parameters (6,1) have an observed R-DFS error den-
sity of 1.00.

3.3 Effect of the Time Bound

The observed R-DFS error density measure in Table 1 is
dependent on the time bound of 1 hour set for the random-
ized DFS trials. We test the effect of the time bound on the
observed R-DFS error density by running randomized DFS
trials on a set of hard models using different time bounds.
In the next section we show how to create the hard models.
The independent variable in this study is the time bound
while the dependent variable is the observed R-DFS error
density. We expect the observed R-DFS error density to in-
crease with the time bound. In Table 2 we present results of
the study.

Table 2. Increasing Time Bound
Subject observed R-DFS error density

Name (Thread Num) Params 1 hour 2 hours 3 hours
Airline(21) 20,2 0.01 0.00 0.00
Reorder(11) 9,1 0.06 0.45 0.37
TwoStage(9) 7,1 0.41 0.69 0.93
TwoStage(10) 8,1 0.04 0.03 0.07
TwoStage(12) 10,1 0.00 0.00 0.00
Wronglock(22) 1,20 0.18 0.20 0.20

In certain models, the observed R-DFS error density
steadily increases with time while in others, it is not clear
how the observed R-DFS error density changes. In the
TwoStage model with parameters (7,1), the observed R-
DFS error density increases from 0.41 to 0.93. This still
shows that Twostage(7,1) is a moderately hard model
for stateful search techniques because it takes an upper
bound of 300 computation hours—a significant amount of
resources—to obtain an observed R-DFS error density of
0.93 in the model. In essence, the time bound allows re-
searchers to set their own threshold of hardness. In general,
we expect a decrease in time bound makes a model progres-
sively harder and vice-versa.

In the following section, we use models defined as hard
in terms of the observed R-DFS error density measure to
identify the factors that contribute toward hardness other
than the time bound. In other words, given a fixed time
bound, how do we make an easy model hard? We show that
the number of threads that manifest an error in the model
and the depth of the transition graph at which errors occur

 0

 0.2

 0.4

 0.6

 0.8

 1

(8,2) (9,1)
Account-
subtype

(7,10) (1,16)
Producer-
Consumer

(16) (16)
Piper

(7,1) (4,4)
Two-
Stage

O
b
s
e
rv

e
d
 R

-D
F

S
 e

rr
o
r

d
e
n
s
it
y

Figure 2. Same thread count in a model yields
different hardness results

assist in making hard models. We also use these factors to
convert some easy models into hard models in a given time
bound.

4 Controlling Factors for Hardness

The total thread count in a model is not a good indica-
tor of its hardness based on our new metric. Even though
the state space of the model grows exponentially with an in-
crease in the total number of threads in the model, it does
not necessarily make it harder for randomized DFS to find
the errors. In Figure 2 we show two versions of four differ-
ent models. The two versions of each model have the same
total number of threads; however, one version is extremely
easy with a high observed R-DFS error density while the
other version is hard with a low observed R-DFS error den-
sity. For example, the model Accountsubtype with the
parameters (8,2) and (9,1) have an observed R-DFS error
density of 0.20 and 0.99 respectively. We observe a simi-
lar disparity in observed R-DFS error density for the other
models in Figure 2. Simply increasing threads or concur-
rency does not reduce the number of errors in the model
which motivates a need to identify other factors that affect
hardness in models.

In an empirical study in this section we show that the
number of threads that actually manifest an error in the
model and the depth of the errors are the controlling factors
of hardness in models based on the new metric. The empir-
ical study in this section uses the same experiment design
described in the previous section for Table 1; however, we
specifically vary models in this study based on the control-

Table 3. Summary of what makes certain models from [6] hard
Subject (Params) : Making models Hard
Accountsubtype (#correctAccounts, #incorrectAccounts) : We increase the number of threads that create

#correctAccounts and keep the number of threads that create #incorrectAccounts
constant because only threads that create #incorrectAccounts cause an error condition.

Wronglock (#dataLockers, #classLockers) : We increase the #classLockers while keeping the
#dataLockers constant; dataLockers check for the data inconsistency created by classLockers.

ProducerConsumer (#producers, #consumers, #items) : We increase #consumers and keep #producers
constant because the error condition, deadlocked consumer threads, is detected after
the correctly running consumer threads complete execution.

Reorder (#setters, #checkers) : We increase the #setters and keep #checkers constant;
setter threads create the error while checker threads manifest the error.

TwoStage (#twoStagers, #readers) : We increase the #twoStagers and keep #readers constant;
twoStager threads cause the error while reader threads manifest the error.

Piper (#seatRequests, #producers and #consumers, bufferSize) : Errors are pushed deeper
in the transition graph when we increase the bufferSize and keep the number of threads,
#producers and #consumers, constant.

Airline (#ticketsIssued, cushion) : The minimum depth of the error is pushed deeper in the
execution trace when we increase the value of cushion and keep the total possible
number of threads, #ticketsIssued, constant.

ling factors. Finally, we compute the observed R-DFS error
density, number of states generated, and error depth statis-
tics which are the dependent variables and measures in this
study. Note that the benchmarks developed in this study are
artificial and meant for in-lab testing and algorithmic devel-
opment before deployment to real systems.

A summary of what makes certain models of [6] hard us-
ing the controlling factors is presented in Table 3. In Table 4
we present evidence of the factors by making models hard
using these factors. We present in Table 4 the observed R-
DFS error density, the minimum (Min), maximum (Max),
and average (Average) number of states generated, and the
minimum (Min), maximum (Max) and average (Average)
depth of errors observed during the randomized DFS trials.

4.1 Specific Thread type

The type and number of threads that actually manifest
an error is a key factor in determining the hardness of the
model. In the Accountsubtype model there are two
kinds of threads where one type of thread creates error-free
accounts and the other creates error-causing accounts. In
this example, the amount of effort required to find an error
in the model depends on the number of threads that create
error-causing accounts. If there is a large number of error-
causing accounts, the total number of errors in the model
increases and this causes a high observed R-DFS error den-
sity of the model. If we specifically decrease the number of
threads that manifest an error in the model, we can design
hard benchmarks for directed model checking. To test this
hypothesis, in the Accountsubtype model we increase
the number of threads that create error-free accounts from

9 to 20 while fixing the number of threads that create error-
causing accounts at 1, the corresponding observed R-DFS
error density value drops from 0.20 to 0.00 as shown in Ta-
ble 4. In contrast, when we fix the number of threads that
create error-free accounts at 8 while increasing the number
of threads that create error-causing accounts from 1 to 8, the
observed R-DFS error density value dramatically increases
from 0.34 for parameters (8,1) seen in Table 1 to an ob-
served R-DFS error density of 1.00 for parameters (8,8) as
seen in Table 4. As described in Table 3, we manipulate the
type of threads that manifest an error in the Wronglock,
ProducerConsumer, Reorder, and TwoStage mod-
els to create hard models. The results on the observed R-
DFS error density are shown in Table 4.

4.2 Depth of Errors

Another important factor that controls the hardness in
models is the depth of errors in the transition graph. The
hardness in the Piper and Airline models is controlled
by varying the depth of the error for a specific thread con-
figuration. The distribution of error depths for the Piper
model with parameters (2,4,4) as observed during the er-
ror discovering runs from a total of 5000 randomized DFS
trials is plotted in Figure 3. We ran 5000 trials to get a
large enough pool of samples to study the distribution of
the error depths for the model. The Piper model with pa-
rameters (2,4,4) has a moderately-deep distribution of er-
rors as seen in Figure 3. The depth of errors in the Piper
model can be controlled by increasing the size of the global
buffer as described in Table 3. The increase in depth is be-
cause a larger buffer requires more execution steps in the

Table 4. Making models hard as measured by the observed R-DFS error density
Subject observed R-DFS States Error Depth Statistics

Name(Thread Num) Params error density Min Average Max Min Average Max
Accountsubtype(17) 8,8 1.00 541 569 1526 540 558 575
Accountsubtype(11) 8,2 0.99 294 66798 6297122 281 305 319
Accountsubtype(11) 9,1 0.20 281 115200 1149916 275 282 293
Accountsubtype(12) 10,1 0.19 309 404441 5045723 302 311 321
Accountsubtype(13) 11,1 0.13 332 5471 37580 331 339 347
Accountsubtype(22) 20,1 0.00 - - - - - -
Wronglock(22) 1,20 0.18 26 42 69 25 41 68
ProducerConsumer(10) 1,8,4 0.97 92 177838 4651467 90 107 128
ProducerConsumer(12) 1,10,4 0.73 100 120234 2099605 99 117 135
ProducerConsumer(14) 1,12,4 0.74 111 226531 4352859 110 128 153
ProducerConsumer(18) 1,16,4 0.67 128 42657 2741804 127 147 173
Reorder(7) 5,1 1.00 3411 23412 34573 33 38 47
Reorder(10) 8,1 1.00 460500 2753141 4324228 46 55 66
Reorder(11) 9,1 0.06 5228089 6024276 6928518 57 61 63
Reorder(12) 10,1 0.00 - - - - - -
TwoStage(8) 6,1 1.00 57080 1566880 3889834 53 60 69
TwoStage(9) 7,1 0.41 330917 5534023 9472266 63 68 73
TwoStage(10) 8,1 0.04 4412764 6454082 8350644 75 76 76
TwoStage(12) 10,1 0.00 - - - - - -
Piper(17) 2,8,5 0.59 152 3100522 8611433 143 150 164
Piper(17) 2,8,6 0.10 160 2825817 7200552 141 147 159
Piper(17) 2,8,7 0.01 7016824 7016824 7016824 144 144 144
Airline(21) 20,7 0.30 116 881910 8120367 109 118 123
Airline(21) 20,6 0.19 166 233024 2936562 117 120 122
Airline(21) 20,5 0.10 183 497437 2716582 113 120 122
Airline(21) 20,4 0.03 26404 946680 2092517 118 121 123
Airline(21) 20,3 0.01 2839090 2839090 2839090 120 120 120
Airline(21) 20,1 0.00 - - - - - -

 0

 200

 400

 600

 800

 1000

 1200

 60 65 70 75 80 85 90

N
u
m

b
e
r

o
f
E

rr
o
rs

Search Depth

Figure 3. Distribution of error depths for the
Piper model with parameters 2,4,4

transition graph to fill. The Piper model with parameters
(2,8,5) and 17 threads has an observed R-DFS error den-
sity of 0.59 as shown in Table 4. If we fix the number of
threads and increase the buffer size from 5 to 7, the cor-
responding observed R-DFS error density rapidly drops to
0.01. The minimum depth of the errors also dramatically
increases as shown in Table 4. A strong dependence on the
depth of errors in the Piper model allows us to create hard
versions of the Piper model in terms of the observed R-
DFS error density. The Airline model is made hard in
the same fashion as described in Table 3. By controlling the
value of the cushion parameter the Airline models with
21 threads get progressively harder as shown in Table 4.

5 Threats to Validity

Path error density [6] and observed R-DFS error den-
sity, semantic based hardness measures, do not generalize
across different tools. The computed values are dependent
on the implementation of the tool and need to be computed
on a per-tool basis. In fact, a simple comparison between
two versions of JPF shows that the hardness measures also
change in different versions of the same tool. There are even
a few models where the hardness is reversed in the two ver-
sions of the tool; a model is hard in one version of the tool
and easy in the other. This discrepancy indicates that the

models need to be characterized for a specific tool before
being used to evaluate the directed model checking tech-
niques in the tool. Differences in the implementations of
partial order reduction, symmetry reduction, and state stor-
age techniques across tools and tool versions might cause
the variance in semantic measures of hardness. Despite the
implementation differences, the observed R-DFS error den-
sity provides a tighter bound on the hardness of the model
compared to path error density in a given tool.

6 Related Work

In recent years tremendous progress has been made in
the field of software model checking [1, 14, 3, 15]. Java
Pathfinder model checks the actual Java bytecode using a
Java virtual machine [28]. Similar approaches use simula-
tors and debuggers for other machine architectures [18, 19].
These approaches retain a high-fidelity model of the tar-
get execution platform while retaining a low-level control
of scheduling decisions. There is a growing interest in
developing tools and models for benchmarking different
model checking approaches used to verify multi-threaded
programs [8, 9, 10]. Recent work [6] makes a good first
attempt in trying to evaluate the hardness of models used
for benchmarking directed model checking by using ran-
dom walk to estimate the number of paths in a model that
contain an error. It is the first time random walk is used
to evaluate the quality of directed model checking bench-
marks. Other researchers have often used variants of ran-
dom walk as an error discovery mechanism with limited
success [12, 25, 17, 20].

Randomization techniques have been used in tandem
with different model checking approaches by various re-
searchers. Stoller uses randomized scheduling to find thread
interactions that lead to an error in Java programs [26],
while Jones and Mercer randomize a decentralized paral-
lel guided search to disperse the search in different parts of
the transition graph [16]. The work in [6] shows that the
default search order used by an algorithm in a model sig-
nificantly affects the results for error discovery in empirical
analysis. The analysis in [6] demonstrates that by simply
randomizing the default search order, the same algorithm
may perform worse than other algorithms. The PRSS ap-
proach in [5] overcomes the limitations of the default search
order by using a depth-first search that randomizes the order
of successors.

7 Conclusions and Future Work

Characterized and classified experimental benchmarks
for directed model checking are critical to understand the
performance in explicit state directed model checking. Cur-

rently, we do not have the syntactic metrics for this clas-
sification and characterization. As such, this paper defines
the observed R-DFS error density as a semantic metric suit-
able for directed model checking empirical studies. The
observed R-DFS error density is based on a rudimentary
search technique and provides a lower bound on the number
of errors in a model. Our analysis in this paper of the most
comprehensive benchmark set of Java programs for explicit
state directed model checking shows the set to be lacking in
diversity and hardness. We study the few Java models that
have a low observed R-DFS error density to understand the
factors that contribute toward making them hard. Our anal-
ysis of the hard models seems to indicate that a model can
be made hard by pushing errors deep in the transition graph
and manipulating the thread count of specific threads reduc-
ing the number of errors. We use these factors to system-
atically lower the observed R-DFS error density of several
easy models.

In a follow-on work, [24], we test the effectiveness of
heuristics in JPF, [11], on models defined as hard in this
paper. The study in [24] shows that the most-blocked, in-
terleaving and choose-free heuristics are not effective in er-
ror discovery on hard models. Note that we test the perfor-
mance of these heuristics only on the class of subjects for
which they are designed. The prefer-thread heuristic con-
sumes more resources in terms of time and memory, as the
models get harder, to find errors effectively in a certain class
of subjects. The empirical evidence of [24] shows that the
observed R-DFS error density measure of hardness provides
a good starting point in defining the quality of the models
for evaluating directed model checking techniques.

In future work, we want to identify additional factors that
affect the observed R-DFS error density of a model and tie
those factors to syntactic constructs in the model. Some
interesting factors to study are the depths of the transition
graph where the randomized DFS spends a large portion
of its search time and the structure of the transition graph
derived from the branching factor.

8 Acknowledgments

We thank Matt Dwyer and Suzette Person at the Univer-
sity of Nebraska and Shmuel Ur at the IBM Research Center
in Haifa. We also thank Ira and Mary Lou Fulton for their
generous donations to the BYU Supercomputing laboratory.

References

[1] T. Ball and S. Rajamani. The SLAM toolkit. In G. Berry,
H. Comon, and A. Finkel, editors, 13th Annual Confer-
ence on Computer Aided Verification (CAV 2001), volume
2102 of Lecture Notes in Computer Science, pages 260–264,
Paris, France, July 2001. Springer-Verlag.

[2] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and
P. Šimeček. DiVinE – A Tool for Distributed Verifica-
tion (Tool Paper). In Computer Aided Verification, volume
4144/2006 of LNCS, pages 278–281. Springer Berlin / Hei-
delberg, 2006.

[3] E. Clarke, D. Kroening, and F. Lerda. A tool for checking
ANSI-C programs. In K. Jensen and A. Podelski, editors,
Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2004), volume 2988 of Lecture Notes in
Computer Science, pages 168–176, Barcelona, Spain, April
2004. Springer.

[4] D. L. Dill. The Murφ verification system. In CAV ’96: Pro-
ceedings of the 8th International Conference on Computer
Aided Verification, pages 390–393, London, UK, 1996.
Springer-Verlag.

[5] M. B. Dwyer, S. Elbaum, S. Person, and R. Purandare. Par-
allel randomized state-space search. In ICSE ’07: Proceed-
ings of the 29th International Conference on Software En-
gineering, pages 3–12, Washington, DC, USA, 2007. IEEE
Computer Society.

[6] M. B. Dwyer, S. Person, and S. Elbaum. Controlling factors
in evaluating path-sensitive error detection techniques. In
SIGSOFT ’06/FSE-14: Proceedings of the 14th ACM SIG-
SOFT international symposium on Foundations of software
engineering, pages 92–104, New York, NY, USA, 2006.
ACM Press.

[7] S. Edelkamp, A. L. Lafuente, and S. Leue. Directed ex-
plicit model checking with HSF-SPIN. In Proceedings of
the 7th International SPIN Workshop, number 2057 in Lec-
ture Notes in Computer Science. Springer-Verlag, 2001.

[8] Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur. To-
wards a framework and a benchmark for testing tools for
multi-threaded programs: Research articles. Concurrency
and Computation: Practice & Experience, 19(3):267–279,
2007.

[9] Y. Eytani and S. Ur. Compiling a benchmark of documented
multi-threaded bugs. In Proceedings of the Workshop on
Parallel and Distributed Systems: Testing and Debugging,
page 266a, Los Alamitos, CA, USA, 2004. IEEE Computer
Society.

[10] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and
how to test them. In IPDPS ’03: Proceedings of the 17th In-
ternational Symposium on Parallel and Distributed Process-
ing, page 286.2, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[11] A. Groce and W. Visser. Model checking Java programs
using structural heuristics. In International Symposium on
Software Testing and Analysis, pages 12–21, July 2002.

[12] P. Haslum. Model checking by random walk. In Proceedings
of ECSEL Workshop, 1999.

[13] K. Havelund and T. Pressburger. Model checking Java pro-
grams using Java PathFinder, 1998.

[14] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Soft-
ware verification with Blast. In T. Ball and S. Rajamani,
editors, Proceedings of the 10th International Workshop on
Model Checking of Software (SPIN), volume 2648 of Lec-
ture Notes in Computer Science, pages 235–239, Portland,
OR, May 2003.

[15] G. J. Holzmann. The model checker SPIN. IEEE Transac-
tions on Software Engineering, 23(5):279–295, 1997.

[16] M. D. Jones and E. Mercer. Explicit state model checking
with Hopper. In International SPIN Workshop on Software
Model Checking (SPIN’04), number 2989 in LNCS, pages
146–150, Barcelona, Spain, March 2004. Springer.

[17] M. D. Jones and J. Sorber. Parallel search for LTL violations.
Software Tools for Technology Transfer, 7(1):31–42, 2005.

[18] P. Leven, T. Mehler, and S. Edelkamp. Directed error
detection in C++ with the assembly-level model checker
StEAM. In Proceedings of 11th International SPIN Work-
shop, Barcelona, Spain, volume 2989 of Lecture Notes in
Computer Science, pages 39–56. Springer, 2004.

[19] E. G. Mercer and M. Jones. Model checking machine
code with the GNU debugger. In 12th International SPIN
Workshop, volume 3639 of Lecture Notes in Computer Sci-
ence, pages 251–265, San Francisco, USA, August 2005.
Springer.

[20] R. Pelanek, T. Hanzl, I. Cerna, and L. Brim. Enhancing ran-
dom walk state space exploration. In FMICS ’05: Proceed-
ings of the 10th International Workshop on Formal meth-
ods for industrial critical systems, pages 98–105, New York,
NY, USA, 2005. ACM Press.

[21] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible
and highly-modular model checking framework. ACM SIG-
SOFT Software Engineering Notes, 28(5):267–276, Septem-
ber 2003.

[22] N. Rungta and E. G. Mercer. A context-sensitive struc-
tural heuristic for guided search model checking. In 20th
IEEE/ACM International Conference on Automated Soft-
ware Engineering, pages 410–413, Long Beach, California,
USA, November 2005.

[23] N. Rungta and E. G. Mercer. An improved distance heuristic
function for directed software model checking. In FMCAD
’06: Proceedings of the Formal Methods in Computer Aided
Design, pages 60–67, Washington, DC, USA, 2006. IEEE
Computer Society.

[24] N. Rungta and E. G. Mercer. Generating counter-examples
through randomized guided search. In Proceedings of
the 14th International SPIN Workshop on Model Check-
ing of Software, pages 39–57, Berlin, Germany, July 2007.
Springer–Verlag.

[25] H. Sivaraj and G. Gopalakrishnan. Random walk based
heuristic algorithms for distributed memory model check-
ing. In Proceedings of Workshop on Parallel and Distributed
Model Checking, 2003.

[26] S. D. Stoller. Testing concurrent Java programs using ran-
domized scheduling. In Proc. Second Workshop on Runtime
Verification (RV), volume 70(4) of Electronic Notes in The-
oretical Computer Science. Elsevier, July 2002.

[27] J. Tan, G. S. Avrunin, L. A. Clarke, S. Zilberstein, and
S. Leue. Heuristic-guided counterexample search in flavers.
In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM
SIGSOFT twelfth International symposium on Foundations
of software engineering, pages 201–210, New York, NY,
USA, 2004. ACM Press.

[28] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda.
Model checking programs. Automated Software Engineer-
ing, 10(2):203–232, 2003.

