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Abstract. Mainstream programming is migrating to concurrent archi-
tectures to improve performance and facilitate more complex computa-
tion. The state of the art static analysis tools for detecting concurrency
errors are imprecise, generate a large number of false error warnings, and
require manual verification of each warning. In this paper we present a
meta heuristic to help reduce the manual effort required in the verifica-
tion of warnings generated by static analysis tools. We manually generate
a small sequence of program locations that represent points of interest
in checking the feasibility of a particular static analysis warning; then
we use a meta heuristic to automatically control scheduling decisions
in a model checker to guide the program along the input sequence to
test the feasibility of the warning. The meta heuristic guides a greedy
depth-first search based on a two-tier ranking system where the first tier
considers the number of program locations already observed from the
input sequence, and the second tier considers the perceived closeness to
the next location in the input sequence. The error traces generated by
this technique are real and require no further manual verification. We
show the effectiveness of our approach by detecting feasible concurrency
errors in benchmarked concurrent programs and the JDK 1.4 concurrent
libraries based on warnings generated by the Jlint static analysis tool.

1 Introduction

The ubiquity of multi-core Intel and AMD processors is prompting a shift in
the programming paradigm from inherently sequential programs to concurrent
programs to better utilize the computation power of the processors. Although
parallel programming is well studied in academia, research, and a few special-
ized problem domains, it is not a paradigm commonly known in mainstream
programming. As a result, there are few, if any, tools available to programmers
to help them test and analyze concurrent programs for correctness.

Static analysis tools that analyze the source of the program for detecting con-
currency errors are imprecise and incomplete [1–4]. Static analysis techniques are
not always useful as they report warnings about errors that may exist in the pro-
gram. The programmer has to manually verify the feasibility of the warning by
reasoning about input values, thread schedules, and branch conditions required



to manifest the error along a real execution path in the program. Such manual
verification is not tractable in mainstream software development because of the
complexity and the cost associated with such an activity.

Model checking in contrast to static analysis is a precise, sound, and complete
analysis technique that reports only feasible errors [5, 6]. It accomplishes this by
exhaustively enumerating all possible behaviors (state space) of the program to
check for the presence and absence of errors; however, the growing complexity of
concurrent systems leads to an exponential growth in the size of state space. This
state space explosion has prevented the use of model checking in mainstream test
frameworks.

Directed model checking focuses its efforts in searching parts of the state
space where an error is more likely to exist in order to partially mitigate the state
space explosion problem [7–11]. Directed model checking uses heuristic values
and path-cost to rank the states in order of interest in a priority queue. Directed
model checking uses some information about the program or the property being
verified to generate heuristic values. The information is either specified by the
user or computed automatically. In this work we use the imprecise static analysis
warnings to detect possible defects in the program and use a precise directed
search with a meta heuristic to localize real errors.

The meta heuristic presented in this paper guides the program execution
in a greedy depth-first manner along an input sequence of program locations.
The input sequence is a small number of locations manually generated such
that they are relevant in testing the feasibility of a static analysis warning or a
reachability property. The meta heuristic ranks the states based on the portion of
the input sequence already observed. States that have observed a greater number
of locations from the input sequence are ranked as more interesting compared to
other states. In the case where multiple states have observed the same number of
locations in the sequence, the meta heuristic uses a secondary heuristic to guide
the search toward the next location in the sequence. In essence, the meta heuristic
automatically controls scheduling decisions to drive the program execution along
the input sequence in a greedy depth-first manner. The greedy depth-first search
picks the best-ranked immediate successor of the current state and does not
consider unexplored successors until it reaches the end of a path and needs to
backtrack.

In this work we do not consider any non-determinism arising due to data
input and only consider the non-determinism arising from thread schedules. The
error traces generated by the technique are real and require no further verifica-
tion; however, if the technique does not find an error we cannot prove the absence
of the error. The technique is sound in error detection but not complete.

To test the validity of our meta heuristic solution in aiding the process of
automatically verifying deadlocks, race conditions, and reachability properties
in multi-threaded programs, we present an empirical study conducted on several
benchmarked concurrent Java programs and the JDK 1.4 concurrent libraries.
We use the Java PathFinder model checker (an explicit state Java byte-code
model checker) to conduct the empirical study [6]. We show that the meta



heuristic is extremely effective in localizing a feasible error when given a few
key locations relevant to a corresponding static analysis warning. Furthermore,
the results demonstrate that the choice of the secondary heuristic has a dramatic
effect on the number of states generated, on average, before error discovery.

2 Meta heuristic

In this section we describe the input sequence to the meta heuristic, our greedy
depth-first search, and the guidance strategy based on the meta heuristic.

2.1 Input Sequence

The input to our meta heuristic is the program, an environment that closes the
program, and a sequence of locations that are relevant to checking the feasibility
of the static analysis warning. The number and type of locations in the sequence
can vary based on the static analysis warning being verified. For example, to
test the occurrences of race-conditions, we can generate a sequence of program
locations that represent a series of reads and writes on shared objects. Note that
we do not manually specify which thread is required to be at a given location
in the input sequence and rely on the meta heuristic to intelligently pick thread
assignments.

We use the example in Fig. 1 to demonstrate how we generate an input
sequence to check the feasibility of a possible race condition from a static anal-
ysis warning. Fig. 1 represents a portion of a program that uses the JDK 1.4
concurrent public library. The raceCondition class in Fig. 1(a) initializes two
AbstractList data structures, l1 and l2, using the synchronized Vector sub-
class implementation. Two threads of type AThread, t0 and t1, are initialized
such that both threads can concurrently access and modify the data structures,
l1 and l2. Finally, main invokes the run function of Fig. 1(b) on the two threads.
The threads go through a sequence of events, including operations on l1 and l2
in Fig. 1(b). Specifically, an add operation is performed on list l2 when a cer-
tain condition is satisfied; the add is then followed by an operation that checks
whether l1 equals l2. The add operation in the Vector class, Fig. 1(c), first
acquires a lock on its own Vector instance and then adds the input element to
the instance. The equals function in the same class, however, acquires the lock
on its own instance and invokes the equals function of its parent class which is
AbstractList shown in Fig. 1(d).

The Jlint static analysis tool issues a series of warnings about potential
concurrency errors in the concurrent JDK library when we analyze the pro-
gram shown in Fig. 1 [4]. The Jlint warnings for the equals function in the
AbstractList class in Fig. 1(d) are on the Iterator operations (lines 8− 14 and
lines 18− 19). The warnings state that the Iterator operations are not synchro-
nized. As the program uses a synchronized Vector sub-class of the AbstractList
(in accordance with the specified usage documentation), the user may be tempted



1: class raceCondition{
2: . . .
3: public static void main(){
4: AbstractList l1 := new Vector();
5: AbstractList l2 := new Vector();
6: AThread t0 = new AThread(l1, l2);
7: AThread t1 = new AThread(l1, l2);
8: t0.start(); t1.start();
9: . . .

10: }
11: . . .
12: }

1: class AThread extends Thread{
2: AbstractList l1;
3: AbstractList l2;
4: AThread(AbstractList l1,
5: AbstractList l2){
6: this.l1 := l1; this.l2 := l2;
7: }
8: public void run(){
9: . . .

10: if some condition then
11: l2.add(some object);
12: . . .
13: l1.equals(l2);
14: . . .
15: }
16: }

(a) (b)

1: class Vector extends
2: AbstractList{
3: . . .
4: public synchronized boolean equals
5: (Object o){
6: super .equals(o);
7: }
8: . . .
9: public synchronized boolean add

10: (Object o){
11: modCnt + +;
12: ensureCapacityHelper(cnt + 1);
13: elementData[cnt + +] = o;
14: return true;
15: }
16: . . .
17: }

1: class AbstractList

2: implements List{
3: public boolean equals(Object o){
4: if o == this then
5: return true;
6: if ¬(o instanceof List) then
7: return false;
8: ListIterator e1 := ListIterator();
9: ListIterator e2 :=

10: (List o).listIterator();
11: while e1.hasNext() and
12: e2.hasNext() do
13: Object o1 := e1.next();
14: Object o2 := e2.next();
15: if¬(o1 == null ? o2 == null :
16: o1.equals(o2)) then
17: return false;
18: return ¬(e1.hasNext() ||
19: e2.hasNext())
20: }
21: }

(c) (d)

Fig. 1. Possible race-condition in the JDK 1.4 concurrent library.



1: /∗ backtrack := ∅, visited := ∅ ∗/
procedure gdf search(〈s, locs, hval〉)
2: visited := visited ∪ {s}
3: while s 6= null do
4: if error(s) then
5: report error statistics
6: exit
7: 〈s, locs, hval〉 := choose best successor(〈s, locs, hval〉)
8: if s == null then
9: 〈s, locs, hval〉 := get backtrack state()

Fig. 2. Pseudocode for the greedy depth-first search.

to believe that the warnings are spurious. Furthermore, people most often ignore
the warnings in libraries since they assume the libraries to be error-free.

To check the feasibility of the possible race condition reported by Jlint for
the example in Fig. 1 we need a thread iterating over the list, l2, in the equals
function of AbstractList while another thread calls the add function. A po-
tential input sequence of locations to test the feasibility of the warning is as
follows:

1. Get the ListIterator, e2 at lines 9− 10 in Fig. 1(d).
2. Check e2 hasNext() at line 12 in Fig. 1(d).
3. Add some object to l2 at line 11 in Fig. 1(b).
4. Call e2.next() at line 14 in Fig. 1(d).

The same approach can be applied to generate input sequences for different
warnings. Classic lockset analysis techniques detect potential deadlocks in multi-
threaded programs caused due to cyclic lock dependencies [2, 12]. For example,
it detects a cyclic dependency in the series of lock acquisitions l0(A) → l1(B)
and l9(B)→ l18(A), where A and B are the locks acquired at different program
locations specified by ln. To generate an input sequence that checks the feasibility
of the possible deadlock we can generate a sequence of locations: l0 → l9 → l1 →
l18. A larger set of concurrency error patterns are described by Farchi et. al in
[13]. Understanding and recognizing the concurrent error patterns can be helpful
in generating location sequences to detect particular errors.

In general, providing as much relevant information as possible in the sequence
enables the meta heuristic to be more effective in defect detection; however, only
2–3 key locations were required to find errors in most of the models in our study.
Any program location that we think affects the potential error can be added
to the sequence. For example, if there is a data definition in the program that
affects the variables in the predicate, some condition, of the branch statement
shown on line 10 in Fig. 1(b), then we can add the program location of the data
definition to the sequence. Similarly we can generate input sequences to check
reachability properties such as NULL pointer exceptions and assertion violations
in multi-threaded programs.
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2.2 Greedy depth-first search

In this subsection we describe a greedy depth-first search that lends itself nat-
urally in directing the search using the meta heuristic along a particular path
(the input sequence of locations). The greedy depth-first search mimics a test-
like paradigm for multi-threaded programs. The meta heuristic can be also used
with bounded priority-queue based best-first searches with comparable results.

The pseudocode for the greedy depth-first search is presented in Fig. 2. The
input to gdf search is a tuple with the initial state of the program (s), the se-
quence of locations (locs), and the initial secondary heuristic value (hval). In a
loop we guide the execution as long as the current state, s, has successors (lines
3 − 9). At every state we check whether the state, s, satisfies the error condi-
tion (line 4). If an error is detected, then we report the error details and exit the
search; otherwise, we continue to guide the search. The choose best successor
function only considers the immediate successors of s and assigns to the cur-
rent state the best-ranked successor of s (line 7). When the search reaches a
state with no immediate successors, the technique requests a backtrack state
as shown on lines 8 − 9 in Fig. 2. The details of choose best successor and
get backtrack state are provided in Fig. 4 and Fig. 5 respectively.

Fig. 3(a) demonstrates the greedy depth-first search using a simple example.
The choose best successor function ranks c0, c1, and c2 (enclosed in a dashed
box) to choose the best successor of b0 in Fig. 3(a). The shaded state c2 is ranked
as the best successor of b0. When the search reaches state d2 that does not have
any successors, the search backtracks to one of the unshaded states (e.g., b1, b2,
c0, c1, d0, or d2). We bound the number of unshaded states (backtrack states)
saved during the search. Bounding the backtrack states makes our technique
incomplete; although, the bounding is not a limitation because obtaining a com-
plete coverage of the programs we are considering is not possible.



1: /∗ mStates := ∅, hStates := ∅, min hval :=∞ ∗/
procedure choose best successor(〈s, locs, hval〉)
2: for each s′ ∈ successors(s) do
3: if ¬visited .contains(s′) then
4: visited .add state(s′)
5: locs ′ := locs /∗ Make copy of locs ∗/
6: h′

val = get h value(s′)
7: if s′.current loc() == locs.top() then
8: mStates := next state to explore(mStates, 〈s′, locs ′.pop(), h′

val〉)
9: else

10: hStates := next state to explore(hStates, 〈s′, locs, h′
val〉)

11: backtrack .add state(〈s′, locs ′, h′
val〉)

12: if mStates 6= ∅ then
13: 〈s, locs, hval〉 := get random element(mStates)
14: else
15: 〈s, locs, hval〉 := get random element(hStates)
16: backtrack .remove state(〈s, locs, hval〉)
17: bound size(backtrack)
18: return 〈s, locs, hval〉

procedure next state to explore(states, 〈s, locs, hval〉)
1: if states == ∅ or hval == min hval then
2: states.add state(〈s, locs, hval〉)
3: else if hval < min hval then
4: states.clear()
5: states.add state(〈s, locs, hval〉)
6: min hval := hval

7: return states

Fig. 4. Two-tier ranking scheme for the meta heuristic.

2.3 Guidance Strategy

The meta heuristic uses a two-tier ranking scheme as the guidance strategy.
The states are first assigned a rank based on the number of locations in the input
sequence that have been encountered along the current execution path. The meta
heuristic then uses a secondary heuristic to rank states that observed the same
number of locations in the sequence. The secondary heuristic is essentially used
to guide the search toward the next location in the input sequence.

In Fig. 4 we present the pseudocode to choose the best successor of a given
state. The input to the function is a tuple 〈s, locs, hval〉 where s is a program
state, locs is a sequence of locations, and hval is the heuristic value of s generated
by the secondary heuristic function. We evaluate each successor of s, s′, and
process s′ if it is not found in the visited set (line 2 − 3). To process s′ we
add it to the visited set (line 4), copy the sequence of locations locs into a new
sequence of locations locs ′ (line 5), and compute the secondary heuristic value for
s′ (line 6). If s′ observes an additional location from the sequence (line 7), then
we update the mStates set (line 8); otherwise, we update the hStates set (line
10). An element from the locs ′ is removed on line 8 to indicate s′ has observed
an additional location. We invoke the next state to explore function with the
mStates or the hStates set and the tuple containing s′. The best successor is



procedure get backtrack state()
1: if backtrack == ∅ then
2: return 〈null,∞,∞〉
3: else
4: x := pick backtrack meta level()
5: b points := get states(backtrack, x)
6: b points := b points ∩ states min h value(b points)
7: return get random element(b points)

Fig. 5. Stochastic backtracking technique.

picked from mStates if it is non-empty; else, it is picked from the hStates set.
The algorithm prefers states in the mStates set because they have observed
an additional location compared to their parent. All other successor states are
added to the backtrack set (lines 12− 18).

The next state to explore function in Fig. 4 uses the secondary heuristic
values (hval) to add states to the mStates and hStates sets. Recall that the
next state to explore is invoked with either the mStates set or hStates set
which is mapped to the formal parameter states. When the states set is empty
or the hval is equal to the minimum heuristic value (min hval) then the algorithm
simply adds the tuple with the successor state to the states set. If, however,
the hval is less than the minimum heuristic value then the algorithm clears the
states set, adds the tuple with the successor state to states, and sets the value
of min hval to hval . Finally, the function returns the states set.

We use Fig. 3(b) to demonstrate the two-tier ranking scheme. In Fig. 3(b)
the search is guided through locations l1 to ln. The dashed-lines separate the
states based on the number of locations from the sequence they have observed
along the path from the initial state. The states at the topmost level l1 have
encountered the first program location in the sequence while states at l2 have
observed the first two program locations from the sequence, so on and so forth.
In Fig. 3(b) we see that state s1 has three successors: s2, s3, and s4. The states
s2 and s3 observe an additional location, l2, from the sequence compared to
their parent s1. Suppose s2 and s3 have the same secondary heuristic value. We
add the states s2 and s3 to the mStates set to denote that a location from the
sequence is observed. Suppose, the secondary heuristic value of s4 is greater than
that of s2 and s3; then s4 is not added to the hStates set.

After enumerating the successors of s1, the mStates set is non-empty so we
randomly choose between s2 and s3 (line 13 in Fig. 4) and return the state as
the best successor. When we evaluate successors of a state that do not encounter
any additional location from the sequence, for example, the successors of s2 in
Fig. 3(b) (enclosed by the box), the states are ranked simply based on their
secondary heuristic values. The best successor is then picked from the hStates
set. All states other than the best successor are added to the backtrack set.
We bound the size of the backtrack set to mitigate the common problem in



directed model checking where saving the frontier in a priority queue consumes
all memory resources.

The get backtrack state function in Fig. 5 picks a backtrack point when
the guided test reaches the end of a path. Backtracking allows the meta heuristic
to pick a different set of threads when it is unable to find an error along the initial
sequence of thread schedules. As shown in Fig. 5, if the backtrack set is empty,
then the function returns null as the next state (lines 1 − 2); otherwise, the
function probabilistically picks a meta level, x, between 1 and n where n is the
number of locations in the sequence. The states that have observed one program
location from the sequence are at meta level one. We then get all the states at
meta level x and return the state with the minimum secondary heuristic value
among the states at that meta level. The stochastic element of picking backtrack
points enables the search to avoid getting stuck in a local minima.

3 Empirical Study

The empirical study in this paper is designed to evaluate the effectiveness of the
meta heuristic in detecting concurrency errors in multi-threaded Java programs.

3.1 Study Design

We conduct the experiments on machines with 8 GB of RAM and two Dual-core
Intel Xeon EM64T processors (2.6 GHz). We run 100 trials of greedy depth-
first search and randomized depth-first search. All the trials are bounded at one
hour. We execute multiple trials of the greedy depth-first search since all ties
in heuristic values are brokenly randomly and there is a stochastic element in
picking backtrack points. An extensive study shows that randomly breaking ties
in heuristic values helps in overcoming the limitations (and benefits) of default
search order in directed search techniques [14]. We pick the time bound and num-
ber of trials to be consistent with other recent empirical studies [15–17]. Since
each trial is completely independent of the other trials we use a super computing
cluster of 618 nodes to distribute the trials on various nodes and quickly gener-
ate the results.1 We use the Java Pathfinder (JPF) v4.0 Java byte-code model
checker with partial order reduction turned on to run the experiments [6]. In the
greedy depth-first search trials we save at most 100,000 backtrack states.

We use six unique multi-threaded Java programs in this study to evaluate the
effectiveness of the meta heuristic in checking whether the input sequence leads to
an error. Three programs are from the benchmark suite of multi-threaded Java
programs gathered from academia, IBM Research Lab in Haifa, and classical
concurrency errors described in literature [15]. We pick these three artifacts from
the benchmark suite because the threads in these programs can be systematically
manipulated to create configurations of the model where randomized depth-first

1 We thank Mary and Ira Lou Fulton for their generous donations to the BYU Super-
computing laboratory.



Subject Total Random Meta Heuristic

Threads DFS PFSM Rand
Prefer

Threads

TwoStage(7,1) 9 0.41 1.00 1.00 1.00

TwoStage(8,1) 10 0.04 1.00 1.00 1.00

TwoStage(10,1) 12 0.00 1.00 1.00 1.00

Reorder(9,1) 11 0.06 1.00 1.00 1.00

Reorder(10,1) 12 0.00 1.00 1.00 1.00

Wronglock(1,20) 22 0.28 1.00 1.00 1.00

AbsList(1,7) 9 0.01 1.00 0.37 0.00

AbsList(1,8) 10 0.00 1.00 0.08 0.00

Deadlock(1,9) 11 0.00 1.00 1.00 1.00

Deadlock(1,10) 12 0.00 1.00 1.00 1.00

AryList(1,5) 7 0.81 1.00 1.00 1.00

AryList(1,8) 10 0.00 1.00 1.00 0.01

AryList(1,9) 11 0.00 1.00 1.00 0.00

AryList(1,10) 12 0.00 1.00 1.00 0.00

Table 1. Error density of the models with different search techniques.

search is unable to find errors in the models [17]. These models also exhibit
different concurrency error patterns described by Farchi et. al in [13]. The
other three examples are programs that use the JDK 1.4 library in accordance
with the documentation. Fig. 1 is one such program that appears as AbsList in
our results. We use Jlint on these models to automatically generate warnings on
possible concurrency errors in the JDK 1.4 library and then manually generate
the input sequences. The name, type of model, number of locations in the input
sequence, and source lines of code (SLOC) for the models are as follows:

– TwoStage: Benchmark, Num of locs: 2, SLOC: 52
– Reorder: Benchmark, Num of locs: 2, SLOC: 44
– Wronglock: Benchmark, Num of locs: 3, SLOC: 38
– AbsList: Real, Num of locs: 6, Race-condition in the AbstractList class

using the synchronized Vector sub-class Fig. 1. SLOC: 7267
– AryList: Real, Num of locs: 6, Race-condition in the ArrayList class using

the synchronized List implementation. SLOC: 7169
– Deadlock: Real, Num of locs: 6, Deadlock in the Vector and Hashtable

classes due to a circular data dependency [12]. SLOC: 7151

3.2 Error Discovery

In Table 1 we compare the error densities of randomized depth-first search
(Random DFS) to the meta heuristic using a greedy depth-first search. The error
density which is a dependent variable in this study is defined as the probability
of a technique finding an error in the program. To compute this probability we
use the ratio of the number of error discovering trials over the total number of



Subject PFSM Heuristic Random Heuristic Prefer-thread Heuristic

Min Avg Max Min Avg Max Min Avg Max

TwoStage(7,1) 209 213 217 40851 130839 409156 414187 2206109 4813016

TwoStage(8,1) 246 250 255 49682 217637 502762 609085 4436444 10025314

TwoStage(10,1) 329 333 340 52794 314590 827830 2635251 6690008 8771151

Wronglock(1,10) 804 3526 12542 73 7082 22418 560 120305 675987

Wronglock(1,20) 2445 21391 175708 67 24479 242418 1900 3827020 15112994

Reorder(5,1) 106 109 112 1803 5597 10408 259 977 2402

Reorder(8,1) 193 197 202 17474 36332 65733 523 3110 13536

Reorder(10,1) 266 271 277 28748 67958 110335 771 5136 16492

AryList(1,10) 1764 14044 55241 3652 15972 63206 - - -

AbsList(1,10) 1382 1382 1382 10497302 10497302 10497302 - - -

Table 2. Comparison of the heuristics when used with the meta heuristic.

trials executed for a given model and technique. A technique that generates an
error density of 1.00 is termed effective in error discovery while a technique that
generates an error density of 0.00 is termed ineffective for error discovery.

We test three different secondary heuristics which is an independent variable
to study the effect of the underlying heuristic on the effectiveness of the meta
heuristic: (1) The polymorphic distance heuristic (PFSM) computes the distance
between a target program location and the current program location on the
control flow representation of the program. The heuristic rank based on the
distance estimate lends itself naturally to guiding the search toward the next
location in the sequence [11]. (2) The random heuristic (Rand) always returns
a random value as the heuristic estimate. It serves as a baseline measure to
test the effectiveness of guiding along the input sequence in the absence of any
secondary guidance. (3) The prefer-thread heuristic (Prefer Threads) assigns a
low heuristic value to a set of user-specified threads [8]. For example, if there are
five total threads in a program then the user can specify to prefer the execution
of certain threads over others when making scheduling choices.

The results in Table 1 indicate that the meta heuristic, overall, has a higher
error discovery rate compared to randomized depth-first search. In the TwoStage
example the error density drops from 0.41 to 0.00 when going from the configura-
tion of TwoStage(7,1) to the TwoStage(10,1) configuration. A similar pattern
is observed in the Reorder model where the error density goes from 0.06 to 0.0;
in the AryList model the error density drops from a respectable 0.81 to 0.00.
For all these models, the meta heuristic using the polymorphic distance heuristic
finds an error in every single trial as indicated by the error density of 1.00. In
some cases, even when we use the random heuristic as the secondary heuristic,
the greedy depth-first search outperforms the randomized depth-first search.

The AbsList, AryList, and Deadlock models represent real errors in the
JDK 1.4 concurrent library. The AbsList model contains the portion of code
shown in Fig. 1. In addition to the locations shown in Section 2.1 we manu-
ally add other data definition locations that are relevant in reaching the loca-
tions shown in Section 2.1. We use the meta heuristic to successfully generate



a concrete error trace for the possible race condition reported by Jlint. The
counter-example shows that the race-condition is caused because the equals
method in Fig. 1(c) never acquires a lock on the input parameter. This missing
lock allows another thread to modify the list (by adding an object on line 11
in Fig. 1(b)) while the thread is iterating over the list in the equals method. To
our knowledge, this is the first report of the particular race condition in the JDK
1.4 library. It can be argued that the application using the library is incorrect
and changing the comparison on line 13 of Fig. 1(b) to l2.equals(l1) can fix the
error; however, we term it as a bug in the library because the usage of the library
is in accordance with the documentation.

Table 2 reports the minimum, average, and maximum number of states
generated in the error discovering trials of the meta heuristic using the three
secondary heuristics. The entries in Table 2 marked “-” indicate that the tech-
nique was unable to find an error in 100 independent greedy depth-first search
trials that are time-bounded at one hour. In the TwoStage, Reorder, AryList,
AbsList subjects, the minimum, average, and maximum states generated by the
PFSM heuristic is perceptibly less than the random and prefer-thread heuris-
tics. Consider the Twostage(7,1) model where, on average, the PFSM heuristic
only generates 213 states while the random heuristic and prefer-thread heuristic
generate 130, 839 and 2, 206, 109 states respectively, on average, before error dis-
covery. In the AbsList(1,10) model the PFSM heuristic finds the error every
time by exploring a mere 1382 states. In contrast, from a total of 100 trials with
the random heuristic only a single trial finds the error after exploring over a
million states, while the prefer-thread heuristic is unable to find the error in the
100 trials. Wronglock is the only model where the minimum number of states
generated by the random heuristic is less than the PFSM heuristic. This exam-
ple shows that it is possible for the random heuristic to get just lucky in certain
models. The results in Table 2 demonstrate that a better underlying secondary
heuristic helps the meta heuristic generate fewer states before error discovery.
The trends observed in Table 2 are also observed in total time taken before error
discovery, total memory used, and length of counter-example.

3.3 Effect of the Sequence Length

We vary the number of key locations in the input sequence provided to the meta
heuristic to study the effect of the number of locations on the performance of
the meta heuristic. In Fig. 6 we plot the average number of states generated (the
dependent variable) before error discovery while varying sequence lengths in the
AryLst model. In Fig. 6 there is a sharp drop in the number of states when we
increase the number of key locations from one to two. A smaller decrease in the
average number of states is observed between sequence lengths two and three.
We observe the effects of diminishing returns after three key locations and the
number of states does not vary much. In general, for the models presented in this
study, only 2–3 key locations are required for the meta heuristic to be effective. In
the possible race condition shown in Fig. 1 (AbsList model), however, we needed
to specify a minimum of five key program locations in the input sequence for
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Fig. 6. Effect of varying the number of locations in the sequence in the AryLst(1,10)
program to verify the race condition in the JDK1.4 concurrent library.

the meta heuristic to find a corresponding concrete error trace. Recall that the
AbsList model represents the race-condition in the AbstractList class while
using the synchronized Vector sub-class in the JDK 1.4 library.

4 Related Work

Static analysis techniques ignore the actual execution environment of the pro-
gram and reason about errors by simply analyzing the source code of the pro-
gram. ESC/Java relies heavily on program annotations to find deadlocks and
race-conditions in the programs [1]. Annotating existing code is cumbersome
and time consuming. RacerX does a top-down inter-procedural analysis starting
from the root of the program [2]. Similarly, the work by Williams et al. does a
static deadlock detection in Java libraries [12]. FindBugs and Jlint look for suspi-
cious patterns in Java programs [3, 4]. Error warnings reported by static analysis
tools have to be manually verified which is difficult and sometimes not possible.
The output of such techniques, however, serve as ideal input for the meta heuris-
tic presented in this paper. Furthermore, dynamic analysis techniques can also
be used to generate warnings about potential errors in the programs [18, 19].

Model checking is a formal approach for systematically exploring the behav-
ior of a concurrent software system to verify whether the system satisfies the
user specified properties [5, 6]. In contrast to exhaustively searching the system,
directed model checking uses heuristics to guide the search quickly toward the
error [7, 8, 20, 9–11]. Property-based heuristics and structural heuristics consider
the property being verified and structure of the program respectively to compute
a heuristic rank [7, 8]. Distance estimate heuristics rank the states based on the
distance to a possible error location [20, 9–11]. As seen in the results, the PFSM
distance heuristic is very effective in guiding the search toward a particular lo-



cation; however, its success is dramatically improved in combination with the
meta heuristic.

The trail directed model checking by Edelkamp et. al uses a concrete counter-
example generated by a depth-first search as input to its guidance strategy [21].
It uses information from the original counter-example (trail) in order to generate
an optimal counter-example. The goal in this work, however, is to achieve error
discovery in models where exhaustive search techniques are unable to find an
error. The deterministic execution technique used to test concurrent Java mon-
itors is related to the technique presented in this paper [22]. The deterministic
execution approach, however, requires a significant manual effort with the tester
required to provide data values to execute different branch conditions, thread
schedules, and sequence of methods.

Similar ideas of guiding the program execution using information from some
abstraction of the system have been explored in hardware verification with con-
siderable success [23, 24]. An interesting avenue of future work would be to study
the reasons for the success (in concretizing abstract traces by guiding program
execution) that we observe in such disparate domains with very different ab-
straction and guidance strategies.

5 Conclusions and Future Work

This paper presents a meta heuristic that automatically verifies the presence of
errors in real multi-threaded Java programs based on static analysis warnings.
We provide the meta heuristic a sequence of locations and it automatically con-
trols scheduling decisions to direct the execution of the program using a two-tier
ranking scheme in a greedy-depth first manner. The study presented in this pa-
per shows that the meta heuristic is effective in error discovery in subjects where
randomized depth-first search fails to find an error. Using the meta heuristic we
discovered real concurrency errors in the JDK 1.4 library. In future work we
want to take the output of a static analysis tool and automatically generate the
input sequence using control and data dependence analyses. Also we would like
to extend the technique to handle non-determinism arising due to data values.
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